按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
牛:在微粒说中光的速度具有完全确定的意义,那就是微粒通过真空的空间的速度。在波动说中它的意义是怎样的呢?
惠:自然,它就是光波的速度。每个人都知道波是以某种确定的速度传播的,光波当然也是这样。
牛:这看来不像那样简单吧!声波是在空气中传播的,海波是在水中传播的。每一种波都必须有一种具体的介质才能在其中传播,但是光能通过真空,而声却不能。设定真空中的波实际上等于根本没有设定波。
惠:是的,这是一个困难,不过对我来说这并不是一个新的困难。我的老师已经把这个问题仔细想过,而认为惟一的出路便是假定一种假设的物质——以太的存在,这是一种充斥于整个宇宙的透明的介质。整个的宇宙可以说是浸在以太之中,一旦我们有勇气引用这个概念,其余一切都是明白而确切的了。
牛:但是我反对这样一个假定,首先因为它引用一个新的虚假的物质,而物理学中的物质已经太多了。还有一个反对它的理由,毫无疑问,你相信我们必须用力学来解释一切,但是怎样来解释以太呢?你能答复下面这个简单的问题吗?以太是怎样由基本粒子组成的,而且在旁的现象中它是怎样出现的?
惠:您的第一个反驳当然有道理,但是引入稍为牵强的没有重力的以太以后,我们便可以立刻放弃那更为牵强的光的微粒。这里我们只有一种“神秘的”物质,而不致于有与光谱中的许多种色相对应的无数的物质。你不觉得这实在是一个进步吗?至少,所有的困难都集中在一点上了。我们不再需要虚伪地假定各种色的粒子都以相同的速率通过真空了。您的第二个反驳也是对的,我们不能够对以太作一个力学的解释。但是毫无疑问,对光学的现象以及旁的现象的往后研究中也许会显示出以太的结构来。目前我们必须等待新的实验与结论,但是我希望最后我们总能够解决以太的机械结构问题。
牛:我们暂且丢开这个问题,因为目前无法解决它。即使我们撇开那些困难,我还想知道你的理论如何去解释那些被微粒说解释得很明白而容易理解的现象,例如光线沿直线在“真空”或空气中通过的情况。把一张纸放在灯的前面,结果会在墙上产生一个清晰的、轮廓分明的影。假如光的波动说是正确的,清晰的影决不可能有,因为光会绕过纸的边缘,使影变得模糊。您知道,在海洋中小船不能阻挡波,波会绕过它,也不会出现小船的影子。
惠:这不是一个能使人信服的论证。试看河里短的波打在大船的边上,在船的这一面发生的波在另一面就看不到。如果波十分小而船十分大,便会出现一个清晰的影。我们所以觉得光是沿直线行进的,很可能是因为它的波长比起普通的障碍物以及实验中所用的孔来要小得多。如果我们能够做出一个足够小的障碍物,很可能也会什么影也没有。要制造一个能够证明光是否能被弯曲的仪器,我们可能会遇到很大的实验上的困难。可是,如果能想出这样一个实验,就能对光的波动说和微粒说下一个判决性的结论了。
牛:光的波动说也许在将来能导致新的论据,但是现在我不知道有何可以确切地确认它的实验资料。除非用实验确实证明了光会弯曲,我看不出有什么理由不相信微粒说。这个学说,在我看来比波动说简单,因而也就较好。
虽然这个问题还没有彻底解决,我们可以把谈话在这里停下来了。
我们还需要说明光的波动说怎样去解释光的折射和色的多样性,我们知道光的微粒说能够作出这种解释。我们从研究折射开始,但是将首先考察一个与光学毫无关系的例子,因为这对考察折射现象很有用处。
假设在一个空旷的场地上有两个人悬着一根坚实的棍子在走路,棍子由两人各执一端(图39)。只要开始时他们以相同的速度笔直向前走去,只要两人的速度保持一样,那末不论速度的大小如何,棍总是作平行的位移,就是说,它的方向不会改变。棍的连续不断的所有位置都是相互平行的。现在,我们设想在一极短的时间之内,也许只有几分之一秒,两个人走路的速度不同了,会发生什么情况呢?很明显,在这一瞬间,棍子转向了,因此它不再对原有的位置作平行位移了。等到恢复为相等的速度时,它的方向已经与原来的方向不同。这在图上已明显地表现出来了,方向的变更发生在两个行路者的速度不同的瞬间。
这个例子使我们能了解波的折射。一列在以太中行进的平面波碰在玻璃表面上,在图40中,我们可以看到一个具有比较大的波前的波在向前行进。波前是一个平面,在任何时刻,这个平面上的以太的各部分其行为相同。因为光的速度依光所通过的介质而异,因此光在玻璃中与在“真空”中的速度不相同。在波前进入玻璃的极短时间内,波前的各个部分各有不同的速度。很明显,已经到达玻璃的那部分便会以玻璃中光的速度行进,而其余部分则仍以光在以太中的速度运动。由于“浸”入玻璃时波前各部分的速度不同,波本身的方向便有了变更。
由此可见,不仅光的微粒说,而且光的波动说也可以解释折射。假如再加上一点儿数学知识用作进一步的考察,便会发现光的波动说的解释更简单、更好,而且结果与观察完全相符。事实上,如果我们知道一束光进人介质时的折射情况,使用定量的推理方法,我们可以推出折射介质中的光速来。直接测量的结果圆满地确认了这些预言,因而也确认了光的波动说。
现在还留下一个色的问题没有解决。
必须记得,一个波是用两个数来表征的,即它的速度和波长。光的波动说的主要假定是:各自的色有各自的波长。黄色的单色光的波长与蓝色光或紫色光的波长不同。现在我们已经有用波长来自然地区别光色的办法来代替按不同的色来勉强地分为不同的微粒的办法了。
因此牛顿关于光的色散实验可以用两种不同的语言来描述,即微粒说的语言和波动说的语言。举例如下:
微粒说的语言波动说的语言
归属于不同色的微粒在“真空’中速度相同,但在玻璃中则不相同。
白光是归属于不同色的微粒的组合,而在光谱中它们是分离开了。归属于不同色的波长不同的光线,在以太中速度相同,但在玻璃中则不相同。
白光是各种波长波的组合,而在光谱中它们是分离开了。
同一种现象出现了两种不同的理论,为了避免这种混乱情形,最好把两者的优缺点作一番细致的研究,然后决定赞成哪一种。但是听过“牛”与“惠”的谈话以后,我们知道这不是一件容易的工作。目前要作出决定,与其说是根据科学的确证来决定的,还不如说是根据兴趣来决定的。在牛顿时代以及其后的百余年间,多数的物理学家都赞成微粒说。
后来在19世纪中叶,历史作出了它自己的判断——它赞成波动说而反对微粒说。在“牛”和“惠”的对话中,“牛”说过,这两个理论之间的争论原则上是可以用实验决定的。微粒说不允许光会弯曲,而要求出现清晰的影。而在另一方面,依照波动说,一个十分小的障碍物不会投下任何影子。在杨(Young)和菲涅耳(Fresnel)的研究成果中,这个结果居然用实验方法实现了,而且理论上的结论也推出来了。
我们已经讨论过一个极端简单的实验,这个实验是把一个有孔的屏放在点光源之前,就会在墙上现出影来。我们把这个实验再化得简单些,假定光源是发射单色光的。为了要得到最好的结果,必须用强的光源,并且设想屏中的孔做得愈来愈小。假如我们用很强的光源,而把孔做得十分小,便会有一种新奇的现象出现,这种现象从微粒说的观点来看是很费解的。光亮和黑暗之间不再有明显的区分了,光成为一连串的亮环与暗环,渐渐消失于暗的背景中。环的出现正是光的波动说的最好表征。对于亮环和暗环相互交替的原因,要在一个稍微不同的实验里才会得到清楚的解释。假设我们有一张黑纸,纸上有两个针孔,让光通过这两个小孔,如果两孔非常接近又非常小,而且单色光的源非常强,则在墙上会现出许多亮带与暗带来,它们在边上渐渐消失于暗的背景中。解释是很简单的,暗带就是从一个针孔射出的波的谷和从另一个针孔射出的波的峰相遇之处,因为