按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
薛定谔来说,波恩并不怎么喜欢拉丁文,甚至不怎么喜欢代数,尽管他对数学的看法后来
在大学里得到了改变。他那时疯狂地喜欢上了天文,梦想着将来成为一个天文学家。
路易斯?德布罗意(Louis de Broglie)当时8岁,正在他那显赫的贵族家庭里接受良好的
幼年教育。他对历史表现出浓厚的兴趣,并乐意把自己的时间花在这上面。
沃尔夫冈?恩斯特?泡利(Wolfgang Ernst Pauli)才出生8个月,可怜的小家伙似乎一出
世就和科学结缘。他的middle name,Ernst,就是因为他父亲崇拜著名的科学家恩斯特?
马赫(Ernst Mach)才给他取的。
而再过12个月,维尔兹堡(Wurzberg)的一位著名希腊文献教授就要喜滋滋地看着他的宝
贝儿子小海森堡(Werner Karl Heisenberg)呱呱坠地。稍早前,罗马的一位公务员把他
的孩子命名为恩里科?费米(Enrico Fermi)。20个月后,保罗?狄拉克(Paul Dirac)也
将出生在英国的布里斯托尔港。
好,演员到齐。那么,好戏也该上演了。
(第二章完)
上帝掷骰子吗——量子物理史话(第三章全文)
版权所有:castor_v_pollux 原作 提交时间:2003…08…11 12:36:43
第三章 火流星
一
在量子初生的那些日子里,物理学的境遇并没有得到明显的改善。这个叛逆的小精灵被他
的主人所抛弃,不得不在荒野中颠沛流离,积蓄力量以等待让世界震惊的那一天。在这段
长达四年多的惨淡岁月里,人们带着一种鸵鸟心态来使用普朗克的公式,却掩耳盗铃般地
不去追究那公式背后的意义。然而在他们的头上,浓厚的乌云仍然驱之不散,反而有越来
越逼人的气势,一场荡涤世界的暴雨终究无可避免。
而预示这种巨变到来的,如同往常一样,是一道劈开天地的闪电。在混沌中,电火花擦出
了耀眼的亮光,代表了永恒不变的希望。光和电这两种令神袛也敬畏的力量纠缠在一起,
便在瞬间开辟出一整个新时代来。
说到这里,我们还是要不厌其烦地回到第一章的开头,再去看一眼赫兹那个意义非凡的实
验。正如我们已经提到过的那样,赫兹接收器上电火花的爆跃,证实了电磁波的存在,但
他同时也发现,一旦有光照射到那个缺口上,那么电火花便出现得容易一些。
赫兹在论文里对这个现象进行了描述,但没有深究其中的原因。在那个激动人心的伟大时
代,要做的事情太多了,而且以赫兹的英年早逝,他也没有闲暇来追究每一个遇到的问题
。但是别人随即在这个方面进行了深入的研究,不久事实就很清楚了,原来是这样的:当
光照射到金属上的时候,会从它的表面打出电子来。原本束缚在金属表面原子里的电子,
不知是什么原因,当暴露在一定光线之下的时候,便如同惊弓之鸟纷纷往外逃窜,就像见
不得光线的吸血鬼家族。对于光与电之间存在的这种饶有趣味的现象,人们给它取了一个
名字,叫做“光电效应”(The Photoelectric Effect)。
很快,关于光电效应的一系列实验就在各个实验室被作出。虽然在当时来说,这些实验都
是非常粗糙和原始的,但种种结果依然都表明了光和电之间这种现象的一些基本性质。人
们不久便知道了两个基本的事实:首先,对于某种特定的金属来说,光是否能够从它的表
面打击出电子来,这只和光的频率有关。频率高的光线(比如紫外线)便能够打出能量较
高的电子,而频率低的光(比如红光、黄光)则一个电子也打不出来。其次,能否打击出
电子,这和光的强度无关。再弱的紫外线也能够打击出金属表面的电子,而再强的红光也
无法做到这一点。增加光线的强度,能够做到的只是增加打击出电子的数量。比如强烈的
紫光相对微弱的紫光来说,可以从金属表面打击出更多的电子来。
总而言之,对于特定的金属,能不能打出电子,由光的频率说了算。而打出多少电子,则
由光的强度说了算。
但科学家们很快就发现,他们陷入了一个巨大的困惑中。因为……这个现象没有道理,它
似乎不应该是这样的啊。
我们都已经知道,光是一种波动。对于波动来说,波的强度便代表了它的能量。我们都很
容易理解,电子是被某种能量束缚在金属内部的,如果外部给予的能量不够,便不足以将
电子打击出来。但是,照道理说,如果我们增加光波的强度,那便是增加它的能量啊,为
什么对于红光来说,再强烈的光线都无法打击出哪怕是一个电子来呢?而频率,频率是什
么东西呢?无非是波振动的频繁程度而已。如果频率高的话,便是说波振动得频繁一点,
那么照理说频繁振动的光波应该打击出更多数量的电子才对啊。然而所有的实验都指向相
反的方向:光的强度决定电子数目,光的频率决定能否打出电子。这不是开玩笑吗?
想象一个猎人去打兔子,兔子都躲在地下的洞里,轻易不肯出来。猎人知道,对于狡猾的
兔子来说,可能单单敲锣打鼓不足以把它吓出来,而一定要采用比如说水淹的手法才行。
就是说,采用何种手法决定了能不能把兔子赶出来的问题。再假设本地有一千个兔子洞,
那么猎人有多少助手,可以同时向多少洞穴行动这个因素便决定了能够吓出多少只兔子的
问题。但是,在实际打猎中,这个猎人突然发现,兔子出不出来不在于采用什么手法,而
是有多少助手同时下手。如果只对一个兔子洞行动,哪怕天打五雷轰都没有兔子出来。而
相反,有多少兔子被赶出来,这和我们的人数没关系,而是和采用的手法有关系。哪怕我
有一千个人同时对一千个兔子洞敲锣打鼓,最多只有一个兔子跳出来。而只要我对一个兔
子洞灌水,便会有一千只兔子四处乱窜。要是画漫画的话,这个猎人的头上一定会冒出一
颗很大的汗珠。
科学家们发现,在光电效应问题上,他们面临着和猎人一样的尴尬处境。麦克斯韦的电磁
理论在光电上显得一头雾水,不知怎么办才好。实验揭露出来的事实是简单而明了的,多
次的重复只有更加证实了这个基本事实而已,但这个事实却和理论恰好相反。那么,问题
出在哪里了呢?是理论错了,还是我们的眼睛在和我们开玩笑?
问题绝不仅仅是这些而已。种种迹象都表明,光的频率和打出电子的能量之间有着密切的
关系。每一种特定频率的光线,它打出的电子的能量有一个对应的上限。打个比方说,如
果紫外光可以激发出能量达到20电子伏的电子来,换了紫光可能就最多只有10电子伏。这
在波动看来,是非常不可思议的。而且,根据麦克斯韦理论,一个电子的被击出,如果是
建立在能量吸收上的话,它应该是一个连续的过程,这能量可以累积。也就是说,如果用
很弱的光线照射金属的话,电子必须花一定的时间来吸收,才能达到足够的能量从而跳出
表面。这样的话,在光照和电子飞出这两者之间就应该存在着一个时间差。但是,实验表
明,电子的跃出是瞬时的,光一照到金属上,立即就会有电子飞出,哪怕再暗弱的光线,
也是一样,区别只是在于飞出电子的数量多少而已。
咄咄怪事。
对于可怜的物理学家们来说,万事总是不遂他们的愿。好不容易有了一个基本上完美的理
论,实验总是要搞出一些怪事来搅乱人们的好梦。这个该死的光电效应正是一个令人丧气
和扫兴的东西。高雅而尊贵的麦克斯韦理论在这个小泥塘前面大大地犯难,如何跨越过去
而不弄脏自己那华丽的衣裳,着实是一桩伤脑筋的事情。
然而,更加不幸的是,人们总是小看眼前的困难。有着洁癖的物理学家们还在苦思冥想着
怎样可以把光电现象融入麦克斯韦理论之中去而不损害它的完美,他们却不知道这件事情
比他们想象得要严重得多。很快人们就会发现,这根本不是袍子干不干净的问题,这是一
个牵涉到整个物理体系基础的根本性困难。不过在当时,对于这一点,没有最天才、最大
胆和最富有锐气的眼光,是无法看出来的。
不过话又说回来,科学上有史