按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
方法。他将病毒放在小牛体内,待其作用减弱时,再将痘浆注射于人身,使人得减轻或完全避免这种疾病的危害。这一发现开创了免疫学的研究。病原体产生有毒的物质或毒素。这种毒素是1876年首先在腐败物内发现的。1888年人们可用过滤培养液的方法,从细菌得到毒素。就白喉病而言,我们先从其细菌培养液取得毒素,然后把这种毒素逐渐加多地注射入马体内,马的组织内即制成一种抗毒素。由免疫的马血制成的血清,可以保护与病菌接触过的人和帮助已经患白喉病的人恢复健康,此外,用病菌的消毒培养法,我们可以制出各种疫苗,使人们对活的病菌所造成的各种疾病部分的或完全的免疫。1884年,梅契尼科夫(Metschnikoff)发现“食菌细胞”(白血球),具有消除致病性细菌的功能。
伯登…桑德森(Burdon-Sanderson)与巴斯德等把詹纳的毒素减弱的原理推广应用,去治疗其他疾病。巴斯德证明狂犬病或恐水病,就是在已经感染以后注射,一般也是有效的。这个可怕的、从前认为无法治疗的疾病,经注射后死亡率减少到百分之一左右。显微镜下看不见有细菌。这种病是一种比一般细菌小得很多的病毒所造成的。
病原微生物的生活史常常是很复杂的,有些病原微生物在不同的寄主里度过其生活的几个阶段。只有通过给活动物接种的极周密的实验,才有可能研究它们的性质。有些寄主有时并不感受侵入的微生物的影响,这就使我们在研究感染的来源时遇到极大困难。人们最后战胜疟疾的经过是研究传染病时所遇见的困难与危险的最好的例子。疟原虫是法国军医拉维兰(Laveran)在1880年左右发现的。五年后意大利人观察到人们感染疟疾是由于被蚊虫咬伤。1894…1897年间,曼森(Manson)与罗斯(Ross)证明一种特殊的蚊虫(Anopheles,疟蚁类)身上有一种寄生虫,这种寄生虫就是疟原虫的幼虫。因此,防治疟疾的正确方法就是毁灭蚊虫的幼虫。而要毁灭蚊虫的幼虫,就需要把沼泽地带的积水排清,或用油膜覆盖于静水的池沼上面,以防止其生长。
同样,人们也查明马尔他病或地中海热,是一种微生物的作用造成的。这种微生物的一段生命寄生在山羊体内,由羊乳传染到人,可是山羊却不生病。人们还发现黑死病(鼠疫)与鼠、蚤及其他传递疫菌于人的寄生虫有关。这是病菌通过间接途径进入人体的又一例子。只有明了这些病菌的生活史之后,防治的斗争才能收到最好的成效。
1893年,莱夫勒(Loffler)与弗罗施(Frosch)最先透彻地研究了超显微镜的病毒。他们指出患口蹄疫的动物的淋巴液经过可以隔离一般细菌的滤器后,仍然可以使其他动物感染疫病。他们断定所处理的对象,不是无生命的毒质而是能生殖的微小机体。我们至今还不能断定这些超显微镜的可滤过的、可以使动植物感染,很多疾病的病毒,究竟是不是粒子状的细菌。无论如何,它们的大小,必与分子接近,有人以为它们是一种非细胞的新型的有生命的物质。
碳氮循环
我们再来谈呼吸的问题。拉瓦锡与拉普拉斯证明动物的生命需要碳和氢经氧化而成二氧化碳与水。1774年,普利斯特列发现,如果把绿色植物放在小鼠“弄坏”过的空气停一个时候,这种空气就可以再一次恢复维持生命的功能。1780年,英根豪茨(Ingen-housz)证明植物的这种作用只有在日光下才能发生。1783年,塞尼比尔(Senebier)表明这种化学变化是把“固定下来的空气”变成“脱燃素的空气”,即由二氧化碳变成了氧。1804年,德·索热尔(deSaussure)对这个过程作了定量的研究。这些结果启发李比希进行研究,并提出一个概括的理论,说碳元素和氮元素在动植物交互生长与腐败的过程中,必经过循环的变化过程。
帮助植物增殖的活性物质是叶绿素。它的化学结构与在日光下的化学反应都很复杂,现在还不十分明瞭。但是它有一种能力,是地球上我们所看到的生命所必需的:它能利用日光的能量去分解空气中的二氧化碳,释出氧气,使之与植物组织的复杂有机分子里的碳相结合。在叶绿素的吸收光谱中,最大吸收量的位置恰与太阳光谱中最大能量的位置相合,这样一种手段与目的的适应,不管是怎样产生的,毕竟是很奇妙的。
有些动物靠食用植物过活,也有一些动物靠吃其他动物维生,因此,一切动物都是依赖叶绿素所收集到的太阳能量生活的。动物呼吸时,将碳化物氧化为有用的衍生物与排泄物,同时靠氧化所发出的其余能量维持体温。植物也慢慢放出二氧化碳,不过在日光中这种变化为具逆向的反应所掩蔽而已。植物与动物都把植物吸取的二氧化碳归还给空气中,无用的有机化合物就堆积在土中。在这里它们为无数土壤细菌所分解,变成无害的无机物,同时将更多的二氧化碳倾注于空气中。这样就完成了碳的循环。
与此相当的氮循环是较近的发现。罗马诗人味吉尔在其《农事诗》里,已经劝告在种麦之前须种黄豆、紫云英或羽扇豆。这种作法的好处是大家都知道的。但是其中道理直到1888年经过赫尔里奇尔(Hellriegel)与威尔法斯(Wilfarth)研究方才弄明白。豆科植物根上的瘤藏有一种细菌,能固定空气中的氮,用我们不知道的化学反应,把氮变成蛋白质,然后输送到植物里去。1895年,维诺格拉兹基(Vinogradsky)寻出另外一个过程:土中细菌直接由空气中得到氮,其所需要的能量大概是由死植物的纤维分解而来的。
植物可以从这两种来源得到氮。含氮的废物,主要是在土壤中适宜的细菌的帮助下,变成氨盐,最后变为硝酸盐。这是植物制造蛋白质所需要的氮的最好来源。土壤是物理的、化学的与生物的混合体,主要是胶体。为了维持它的平衡,它既需要从动植物腐败而来的有机盐,也需要从矿物而来的无机盐。
李比希说明了矿物盐在农业上的重要性,但他忽略了氮的极端重要性。十九世纪中叶,这个问题才由布散果耳(Boussingault)以及吉尔伯特(Gilbert)和劳斯(Lawes)在罗森斯特德(Rothams-ted)实验站加以研究;他们的研究成果成了现代人工施肥的基础。植物生命不可缺少的元素是氮、磷与钾,但这些元素通常只有极少量。如果这些元素的一种分量过少,农作物的收成必受限制。只有按照植物能利用的方式添加不足的元素,植物才会自由生长起来。微量的其他元素,如硼、锰与铜,也是植物所需要的。
人工施肥的科学研究使农民在耕作方法上得到更大的自由。当人们可以把农作物所吸取的元素还给土地来维持土地的肥沃性的时候,旧日的轮种和体种方法就可以大大改变了。
自然地理学与科学探险
在十八世纪后半期和整个十九世纪,系统的世界探险工作进行得很快,而且大部分是在真正科学精神下进行的。1784年,英国军需部在洪斯洛荒地(Hounslow Heath)测定基线,开始利用三角学进行测量。这样,法国地图学家丹维尔(d’Anvlle)所创始的精密地图和海洋图就都有可能给制出来了。
我们应当叙述一下普鲁士博物学家和旅行家洪堡男爵(vonHumboldt,1769-1859年)的工作。他最喜欢住在巴黎。在那里,他协助盖伊-吕萨克完成气体的研究(见211页)。他花了五年的时光在南美洲及墨西哥海湾的海上与岛上探险。根据这次旅行所得的观察结果,他认为应该把自然地理学与气象学当做是精确的科学。洪堡首先在地图上绘出等温线,因而得到一个比较各国气候的方法。他攀登过安第斯山脉的琴博腊索山(Chimborazo)与其他高峰,以观察温度随海拔增高而降低的比率。他研究了赤道带暴风与大气扰乱的起源;他研究了火山活动带的地位,认为火山活动带与地壳的裂缝是符合的。他调查了动植物在自然条件影响下的分布情况;他研究了从两极到赤道地磁强度的变化,并巳创造了“磁暴”这个名词来描述一个他首先加以记录的现象。
洪堡的劳动与人格引起人们很大兴趣,从而推动了欧洲各国的科学探险。1831年英国派出“猎犬号”(the Beagle,或音译为“贝格尔号”)进行了一次有名的航行,“完成了巴塔