友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八八书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

科学史及其与哲学和宗教的关系-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




  电磁力场 

  安培发现电磁定律,用数学公式把它表达出来以后,就感到满足,没有再去探索这种力靠什么机制传播了。但承继他的法拉第,不是数学家,对于中介空间或电磁力场的物理性质与状态特别感到兴趣。如果把一块纸版放在磁捧之上,再拿一些铁屑散布在纸版上,这些铁屑将集合成许多线,表明磁力是沿这些线而起作用的。法拉第想象这样的力线或力管将磁极或电荷连结起来,真的存在于磁场或电场之中,它们也许是极化了的质点所组成的链。如果它们象橡皮条那样,处在紧张状态之下,向纵的方向拉长,而向横的方向压缩,那么它们会在煤质中伸展出去,而将磁极或电荷向一起拉拢,这样可以解释吸引的现象。不论实际是否这样,用法拉第的力线,来表示绝缘的媒质或电场中的应力与应变的现象,实在是一个便利的方法。 

  法拉第又从别的方面研究了电介质的问题。他发现在导体周围的空气为虫胶或硫一类绝缘体所代替时,导体的静电容量,即在一定电位或电压下它能负荷的电量,便有增加;这个增加的比例他叫做那个绝缘体的电容率。 

  法拉第的见解超过了他的时代,而且他用来表达这些见解的术语,也不是当时所熟习的。三十年后,麦克斯韦将这些见解翻译成数学的公式,并发展为电磁波的理论时,它们的重要性才被人认识(在英国立刻就被人认识,在其他国家比较慢)。这样,法拉第就奠定了实用电学的三大部门,即电化学、电磁感应与电磁波的基础。而且他坚决主张电磁力场具有极大重要性,这也是现代场物理学理论有关电的方面的历史起点。 

  电磁单位 

  我们得感谢两位德国的数学物理学家高斯(1777-1855年)与韦伯(W.E.Weber,1804-1891年),因为他们发明了一套科学的磁与电的单位。这种单位不是根据和它们同类的量任意制定的,而是根据长度、质量与时间三种基本单位而制定的。 

  1839年,高斯发表了他的《按照距离平方反比而吸引的力的一般理论》一书。电荷、磁极以及万有引力都适合这个关系。这样,就可以给单位强度的电荷或磁极下这样的定义:同相等的类似电荷或磁极在空气中相距一单位(1厘米),而以一单位的力(1达因)对该电荷或磁极加以排斥的电荷或磁极。如果用另一介质来代替空气,这个力就按一定的比例减少,他用k来代表电力,u代表磁力。k就是法拉第的电容率,在这里成为介质常数,u这个量后来叫做介质的磁导率。在这个基础上高斯建立了一个宏伟的数学演绎的大厦。 

  安培与韦伯由实验证明带电流的线圈,与同大小同形式的磁铁的作用相同,一个圆圈电流与一个在正交向上磁化的圆盘等效,所以一面是指北极,另一面是指南极的。这样单位电流可定义为和单位磁力的磁盘等效的电流。根据这个定义,可以用数学方法导出如下结果:圆圈电流中心的磁场(即作用于单位磁极的力)等于2xc/r,这里c是电流的强度,r是圆圈的半径,这个算式自然与由安培公式所导出的结果相合。所以只要将一颗小磁针悬挂在一大圆线圈的中心(这种装置就是现今所说的正切电流计),再于电流通过线圈时,观测磁针的偏转,我们就可以以绝对单位或厘米一克…秒(C.G.S.)单位去测量电流。常用的电流单位(安培)按规定是上面所说的单位的十分之一,不过,多年以来为了实际应用与测量便利,一直是根据电解时析出银的重量来做电流单位的标准,如上面所谈到的。现在又有人提议重回到理论的定义上去。 

  热与能量守恒 

  在十八世纪和十九世纪中,由于蒸汽机的发展,热学成为一门具有非常重要的实际意义的科学,这反过来引起人们对于热学理论的重新注意。 

  我们以前说过,按照热质说,热是一种不可秤量的流体。这个学说在启发和解释测量热量的实验方面起过有益的作用。但作为物理的解释,分子激动说更合于敏锐的自然哲学家如波义耳和牛顿的口味。1738年,别尔努利(Daniel Bernouilli)指出,如果将气体想象为向四面八方运动的分子,那末这些分子对盛器的壁的冲击,便可解释气体的压力,这压力又必因气体被压缩与温度的增高而按比例增加,正如实验所要求的那样。 

  热质论者解释摩擦生热的现象时,假定摩擦生出的屑末或摩擦后最终态的主要物质的比热比摩擦以前的初态物质要小一些,因而热是被逼出而表现于外的。但在1798年,美国人汤普逊(Benja…min Thompson后来在巴伐利亚成了朗福德伯爵Count Rumforo)用钻炮膛的实验证明发热的量大致与所作的功的总量成正比,而与削片的量无关。可是热的流体说仍然存在了半个世纪。 

  不过,到1840年,人们就开始了解自然界里各种能量至少有一些是可以互相变换的。1842年,迈尔(J.R.Mayer)主张由热变功或由功变热均有可能。迈尔在空气被压缩的时候,所有的功都表现为热的假定下,算出了热的机械当量的数值。同年,英国裁判官兼科学家、以发明一种伏特电池著名的格罗夫(W.R.Grove)爵士,在一次讲演中说明了自然间能量相互关系的观念,并在1846年出版一本书《物理力的相互关系》中,阐述了这个观念。这本书和1847年德国大生理学家、物理学家与数学家赫尔姆霍茨(H。L.F vonHelmholtz,1821-1894年)根据独立的研究写成的《论力的守恒》,是一般地论述现今所谓的“能量守恒”原理的最早著作。 

  1840至1850年间,焦耳(J。P。Joule,1818…1889年)以实验方法测量了用电和机械功所生的热量。他先证明电流通过导线所生的热量,与导线的电阻和电流的强度的平方成正比例。他压水通过窄管或压缩一定量的空气或使轮翼转动于液体中,而使液体生热。他发现不管用什么方式作功,同量的功常得同量的热,根据这个等值的原理,他断定热是能量的一种形式。虽是这样,“经过多年之后,科学界领袖才开始赞同这种看法”,虽然斯托克斯告诉威廉·汤姆生(William Thomson):“他宁愿做焦耳的一个信徒”。1853年,赫尔姆霍茨访问英国时就已经看见许多人对这个科学问题发生兴趣,他到法国时又看见雷尼奥(Regnaull)已经采取了新的观点。焦耳的最后结果表明:使一磅水在华氏55至60度之间温度升高1度所需要消耗的功为772呎磅。后来实验证明比较接近精确的数字是778呎磅。 

  焦耳用热与功等价的明确的实验结果,给予格罗夫所主张的“力的相互关系”、和赫尔姆霍茨所倡导的“力的守恒”的观念以有力的支持。这个观念就这样发展成为物理学上以“能量守恒”得名的确定原理。能量作为一个确切的物理量,在那时的科学上还是新东西。这个名词所表示的观念,曾经用不准确的、具有双重意义的“力”一词来表达。托马斯·杨指出,这样就把“能量”和“力”混淆起来了。能量可以定义为“作功的力”,而且如果两者的转换是完全的,能量便可以用所作的功来测度。“能量”一词用于这种专门的意义应归功于兰金(Rankine)与汤姆生。汤姆生采用了托马斯·杨所提出的把力和能量区别开来的主张。 

  焦耳的实验证明在他所研究过的情况里,一个体系中能的总量是守恒的,功所耗失之量,即作为热而出现。一般的证据引导我们把这个结果推广到其他的变化上去,例如机械能变为电能,或化学能变为动物热之类。直到近年为止,一切已知的事实都适合于这句话:在一个孤立的体系中,总的能量是守恒的。 

  这样确立的能量守恒原理可以和较早的质量守恒原理相媲美。牛顿的动力学的基础就在于这样一种认识:有一个量,--为了便利起见,称为一个物体的质量——经过一切运动而不变。在化学家手里,天秤证明:这个原理在化学变化中也一样地有效。在空气中燃烧的物体,它的质量并不消失。如果把所产生的物质收集起来,它们的总量必等于原物体与所耗的空气的份量的总和。 

  能量也是这样的:质量以外的另一个量出现在我们的意识里,主要是因为它经过一系列的转换仍然不变。我们觉得承认这个量的存在,把它当作一个科学的概念,并且给它起一个名字,是有种种
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!