按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
因此,奥普洛班因有发动机。
认为第一个推论在逻辑上是正确的人,比认为第二个推论在逻辑上是正确的人多些,尽管这两个推论在结构上是一模一样的,只不过是用“奥普洛班因”这个无意义的词代替了“汽车”。他们受到自己对汽车的知识的误导;他们知道第一个三段论的结论是真实的,因而认为这个推论在逻辑上是正确的。可是,如他们在奥普洛班因的情况下所看到的,这个推论是不正确的,他们对奥普洛班因这个词毫不了解,他们可以辨认出来,奥普洛班因与有发动机的东西之间没有必然的重叠在内。
归纳推理:对比而言,归纳推理稍为松动一些,也不是很严密。它从具体的想法向更广泛的概念推进,也就是说,从有限的情形向总体的概括上发展。从“苏格拉底有生有死”,“亚里士多德有生有死”和其它例子中,根据自己对案例不同程度的信心而推出,“所有的人都有生有死”,尽管哪怕一个例外就会使该结论无效。
人类重要的推理当中有很多都属于这一类型。对思维至关重要的范畴化和概念形成都是归纳推理的成果,如我们在儿童如何形成范畴和概念能力的研宪中所知道的。人类所拥有的全部有关世界的高级知识——从死亡的不可避免到行星运动和星系形成的法则——都是从大量具体事例中推出概括的产品。
在模式辨认中使用到的归纳推理也是解决问题的关键。有一个简单的例子:
下个数字是什么?
2 3 5 6 9 10 14 15——
10岁的小孩子看看之后也会解答这个题;成人可以在一分钟左右看出这个模式和答案(20)。经济学家、公共卫生官员、电话系统设计员和其他许多进行对我们这个现代社会的生存至关重要的模式辨认工作的人,他们利用的正是这个推理过程。
然而,令人不安的是,研究者发现,许多人不会从进入的信息中得出演绎推理。我们经常只注意到支持现存想法的一些东西,并把它们存储在记忆之中,而忽视相反的东西。心理学家把这种现象称作“确认偏差”。丹恩·拉塞尔和沃伦·琼斯让受试者读一些有关超感知觉的材料,有些是确定性的,有些是否定性的。之后,拉塞尔和琼斯对他们的回忆进行测试。相信超感存在的人百分之百记得确定性的材料,而否定性的材料只记得百分之三十九。怀疑论者可以记住两方面的材料达百分之九十。许多类似的偏见研究发现,有强烈偏见或者种族偏见的人从负面的信息中得出有关他们仇恨或者不相信的东西的总结,或者忘记对他们的任何支持性材料。
或然性推理:人类思维的能力是进化选择的结晶,可是,我们在高级文明社会生活的时间太短了,不可能形成对统计性的或然性进行严密推理的天生能力,尽管现代生活极需要这种能力。
丹尼尔·卡恩曼和亚莫斯·特沃斯基都在这个领域里进行过大量工作,他们问一群受试者说他们喜欢哪一种:肯定拿到80美元,或者百分之八十五的机会拿100美元,当然就有百分之十五的可能是什么也拿不到。大部分人愿意拿80美元,尽管统计上的风险平均数为85美元。卡恩曼和特沃斯基作出结论说,人们一般“不愿冒风险”:他们情愿拿到确定的东西,哪怕一个风险项目更值得一赌。
我们再回到正面情形中来。卡恩曼和特沃斯基问另一群人说,他们喜欢肯定赔出80美元,或是喜欢百分之八十五的可能赔出100美元,当然也就有百分之十五的可能是一分钱也不赔。这次,大部分人宁愿赌一赌,而不愿照赔,尽管平均来说,这场赌局代价更大。卡恩曼和特沃斯基的结论是:当在获取中进行选择时,人们不愿意冒险;当在损受中进行选择时,人们会找机会冒一下险——在这两种情况下,他们都有可能作出错误判断。
后来的一项发现更引人注意,他们让一群大学生在两种解决公共卫生问题的版本前作出选择。这两种办法在数学上是相等的,但措辞不一样。第一个版本是:
假设美国正在准备防御一种罕见的亚洲疾病的爆发,它估计会使60O人丧生。有人提出了两种方案来对付该病。假设对这些方案的后果进行的、准确的科学估计如下:
如果采纳A方案,则有可能会拯救200人;
如果采纳B方案,则有三分之一的可能性使600人全部获救,还有三分之二的可能是这600人一个也救不了。
你喜欢哪一种方案?
第二个版本的故事与前面一样,只是措词略有不同:
如果采纳C方案,400人会死去。
如果采纳D方案,有三分之一的可能性是没有人会死去。但有三分之二的可能是600人全部死去。
受试者对这两个版本的问题反应差别极大:百分之七十二的人选择方案A而不是方案B,但百分之七十八的人(另一个小组)选择了方案D而不是方案C。卡恩曼和特沃斯基的解释:在第一版中,结果是以获取(拯救的生命)来描述的,在第二版中是以损失(损失的生命)来描述的。这是与上述金钱方面的实验同样的偏见,受试者的判断受到扭曲,在处于生死关头的生命和处于赌桌上的金钱上是一样的。
我们在这些情况下会作出很差的判断,是因为涉及的因素是“否直觉的”;我们的思维不愿意抓住或然性中的现实。这个缺点既影响个人,也影响整个社会。选民和选民代表经常因为很差的或然性推理而作出一些付出很大代价的决定。如理查德·尼斯比特和李·罗斯在他们的《人类推理》一书所说的,许多政府行为和在危机时期采取的政策都因其后发生的事情而被看作是有益的,尽管这些政策经常是无用或者有害的。错误的判断是由人类的倾向引起的,他们把一种结果归因于产生这个结果的行动,尽管这些结果经常是事物自然的进展所致,是从异常复归正常的自然趋势。
类比推理:到70年代末,认知心理学家已经开始认识到,逻辑学家认为是谬误推理的很多东西实际上是“自然”或者“行得通的”推理——不准确,不严密,直觉型的,而且从技术上讲也是无效的,但经常是合宜的,而且是有效果的。
这样的思维当中的一种就是类比。每当我们认识到,一个问题与另一个不同的问题,即,我们大家都很熟悉也知道答案的问题是可以类比的时候,我们会跳跃式地直接进入结论。比如,许多人在组装一件散落的家具或者机器零件时,根本不看说明手册而直接凭“感觉”动手——寻找各零件之间的关系,并在不同的家具或者机器零件之间寻找他们以前组装过的东西的类同之处。
类比推理是在儿童心理发育的晚期阶段形成的。最近一直在进行类比思维研究的认知心理学家迪德尔·金特纳,她问5岁的孩子和成人说,云彩和海绵在哪些方面相像?孩子们以类似的特点回答问题(“它们都是圆圆的,毛绒绒的”),而成人则以相关的类似点来回答(“它们都吸水,而且都能挤水出来。”)
金特纳把类比推理看作是一个域和另一个域之间的高级关系他说:
在我看来,这些程序里没有一个堪与人类思维过程的复杂性相提并论。“人工智能”程序与人类不一样,它们倾向于是专心一致的,不可能分心,也没有感情。再说,它们一般从一开始就配备有解决一个问题所需的全部认知材料。
然而,这位权威性毫不亚于赫伯特·西蒙的人却从范畴上确定地说,思维和机器是类似的。1969年,在一系列收集在《人工智能科学》一书中的讲座中,他提出,计算机和人类思维都是“符号系统”——能够处理、转变、精确而且一般也能操纵各种各样的符号的物理存在。
在整个70年代,专心至致的心理学家中的少数人和麻省理工学院、卡耐基-默伦大学、斯坦福大学和其它一些大学的计算机科学家们狂热地相信,他们已经面临着一种巨大的突破,因而开发出一些既可以说明思维的工作原理,也是人类思维的机器翻版的程序来。到80年代初期,这项工作已经扩张到了好几所大学和一些大公司的实验室里。这些程序可以执行像走国际象棋、对句子进行语法分析、把一些基本句子从一种语言翻译成另一种语言和根据大量光谱数据推论出分子结构这样一些各种各样的活动。
狂热者认为信息处理解释思维的工作原理的能力无边无际,人工智能通过执行同一