按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
第一步很明显:M必定是1,因为任何两位数——这里指S+M——都不可能加起来大于19,哪怕有进位。西蒙和纽厄尔让志愿者一边解题一边大声念,把他们所说的一切话都记下来,之后把他们的这些思想过程的步骤编进图中,表现成一个步骤的寻找轨迹、不止一个选择时交叉点的决定,走向死解的一些错误选择,从最后一个交叉处回过头来重试另一个办法等等。
西蒙和纽厄尔特别利用了国际象棋,这是一种比汉诺依塔或者密码算术难得多的复杂问题。在一种60步骤的典型国际象棋比赛中,每一个步骤平均都有30种可能步骤;只先“看”三步就意味着要看到27000个可能性。西蒙和纽厄尔希望了解的问题是,象棋手是怎样处理数字如此庞大的可能性的。答案是:有经验的象棋手并不考虑他自己下一步可能要走,或者对手可能要走的所有的可能步骤,而只是考虑几步有意义,并符合基本常理的一些棋路,如“保护国王”,“不要因为很低的价值而随便弃子”等。简短地说,象棋手进行启发式的寻找——一种由宽广的、符合棋理的战略原则引导的寻找——而不是整体但没有条理的瞎找。
纽厄尔和西蒙问题求解学说又花费了他们15年的时间,因为字母顺序的原因,纽厄尔的名字在他们的共同出版物上总是处在前面。他们的学说是,问题求解是对一种通道的追寻,从开始状态直到目标。为了实现这个目标,求解者必须通过由他可能到达的所有可能状态构成的问题空间,并通过所有符合通道限制(规则或域的条件)的步骤找到一个通道。
在这样的一些寻求中,可能性通常会呈几何级增长,因为每一个决定点都会提供两种或者两种以上的可能性,可能性下面又有若干决定点,因此而提供另一套可能性。在普通的国际象棋比赛的60个步骤中,如前面已经说过的,每一个步骤平均都有30种可能性;一场比赛中通道的总数为30的60次方到3000万个百万立方百万立方百万立方百万立方百百万立方百万立方——这个数字完全超出了人类的理解力。相应地,如西蒙和纽厄尔的研究所演示的,问题求解者在他们的问题空间里寻找他们的通道时,并不会寻找每一个可能的通道。
他们于1972年出版,并相应地称作《人类问题求解》的卷秩浩繁的著作中,纽厄尔和西蒙把他们认为是总体特征的东西提出来了。其中有:
——因为短期记忆的局限,我们是以串行的方式在问题空间中搜寻的,一次解决一个问题。
——可是,我们并不去执行对每一个可能性一个一个的串行搜寻。我们只在有很多种可能性的时候才使用这种方法。(比如,如果你不知道一小串钥匙中的哪一个可以打开朋友家的门,你只好一次试一把。)
——在许多问题求解情形里,试误法是不可行的,这样,我们就只好进行启发式的搜寻。知识使这一点变得非常有效。解决象由八个字母构成的颠倒字母构成的字这样一个简单问题,比如SPLOMBER,可能需要56个工作日,如果你把全部40,320个排列以每5秒钟一个写下来的话,可是,大多数人可以在几秒或者几分钟内解决这个问题,因为他们排除掉了无效的组合(比如,PB或者PM)而只考虑有效的组合(SL,PR,等)。
——一个常用的、重要的启发式简化法是纽厄尔和西蒙称作“最好从头开始”的方法。在搜寻通道的任何交叉点或者“决定树叉”上,我们必须先试有可能会把我们带到离目标最近的地方的那一个。每一步都试着靠近目标是非常有效的(尽管有时候我们得离开它,以便绕过一个障碍物。)
——另一种补充性的,更为重要的启发是“中值末尾分析法,”西蒙称这种方法为“GPS(总体问题求解法)的马力”。中值末尾分析法是一种前进和后退混合起来的分析法。跟只寻求前进步骤的象棋不一样,在许多情况下,问题求解者知道,他不能够直接进入目标,而只能退而求其次,先接近子目标,再从于目标接近大目标,或许,他还得退回到更早以前的子目标,或者更早更早一些的子目标。
最近回顾问题求解学说时,基思·霍利约克提供了中值末尾分析法的一个很差的例子。你的目标是要将客厅重新喷漆。最近的子目标是你可以进行喷漆操作的条件,但这要求你拥有漆和刷子,因此,你必须先到达购买这些用品的子目标。要这样做的话,你又必须先实现到达五金商店这样一个子目标。这样一直退下去,直到你完全策划好了从目前的状态到拥有一间喷了漆的客厅为止。
像纽厄尔和西蒙求解学说这样一种成就虽然了不起,可它只使用了演绎推理。再说,它只考虑到了“知识贫乏”问题求解:只应用于迷宫、游戏和抽象问题。这种方法描述知识丰富领域里的问题求解,比如科学、商业或者法律等如何,还不太清楚。
因此,在过去的二十多年时间里,一系列研究者已经把推理的调查拓宽了。有些人研究了演绎和归纳推理以之为基础的一些心理倾向;有些人研究了两种形式的推理,还有一些人研究了我们在日常推理中的情况。有些人研究过专家和新手在知识丰富领域里进行的推理差别。这些调查已经结出了丰硕的成果,给人类思维推理这片看不见的工作领域闪进了光芒。这里是一些典型例子:
演绎推理:上溯至亚里士多德时代的传统观念认为,一共有两种推理形式,演绎和归纳。演绎是从已经给定的信条中抽出进一步的信条,也就是说,如果前提是正确的,结论也应该是正确的,因为结论必然包含在前提之中。从亚里士多德经典的三段论的前提中:
所有人都有生有死。
苏格拉底是个人。
我们必然得出:
苏格拉底有生有死。
这种推理非常严密,强烈,也很容易理解,很有说服力。它得到了逻辑和几何公理的证明。
可是,许多只有两个前提,也只包含三个段的三段论却不是如此明显的;有些很难理解,大多数人都无法从中得出一个有效的结论。菲利普·约翰逊-莱尔德曾研究过演绎心理学,他举出了一个曾在实验室里使用过的例子。想象一下,一间房子里有一些考古学家,生物学家和象棋手,再考虑下述两个论断是真实的:
这里的考古学家都不是生物学家。
所有的生物学家都是象棋手。
从这两个前提中能够得出什么呢?约翰逊-莱尔德发现,很少有人可以给出正确答案。(惟一正确的演绎就是,有些象棋手不是考古学家。)为什么不能?他相信,从上述苏格拉底三段论中得出有效结论很容易,从上述考古学家三段论中抽出结论很困难,是因为这些推论在思维中表现出来的方式——即我们从中创立的“心理模式”的方式。
一些接受过正式的逻辑训练的人通常会以几何图形的形式想象这个问题,可以把这两个前提用圆圈代替,一个套在另一个里面,或者重叠在一起,或者分开单独成一体。可是,约翰逊-莱尔德的学说是以其研究为基础,并通过计算机模拟来求证的。他认为,没有接受过这方面训练的人使用的是一种更为简易的模式。在苏格拉底三段论中,他们无意识地想象着一群人,都有生有死,想象苏格拉底也与这群人有关,因而准备找到任何例外(可以超出这群人的例外,也可能就是苏格拉底)。因为没有这种可能性,因此,他们就正确地得出了苏格拉底有生有死的结论。
然而,在考古学家三段论中,他们先想象并尝试第一种,再尝试第二种,最后是第三个模式,越往后越难(我们在此略去细节)。有些人依靠第一种,不能够看到第二种会使其无效,另外一些人依靠第二种,也没有看到第三种和最困难的一种使其行不通,这也是导致惟一答案的通道。
心理模式不是错误演绎的惟一来源。实验显示,一个三段论的形式很简单,其心理模式也很容易确立的时候,一些人也容易受到自己的想法和信息的误导。一个研究小组问一批受试者说下述三段论在逻辑上是否正确:
所有有发动机的东西都需要油。
汽车需要油。
因此,汽车有发动机。
所有有发动机的东西都需要油。
奥普洛班因需要油。
因此,奥普洛班因有发动机。
认为第一个推论在逻辑上是正确的人,比认为第二个推论在逻辑上是