友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八八书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

物理学的进化-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



的观点来说,我们在创造声波,这种波从静止的声源以空气中的声速传播。假如口与耳之间没有空气或旁的介质,我们便听不到声音。实验表明,如果没有风,并且对于我们所选择的坐标系来说空气是静止的,那么声音在空气中向各个方向的传播速度都是一样的。 
    现在我们想象房间穿过空中作匀速直线运动。一个在外面的人可以透过运动着的房间(假如你高兴,说成火车也可以)的玻璃墙看到里面所发生的一切。室外的人可以根据室内的观察者的测量结果,推算出声音对于与他的环境相联系的一个坐标系的速度,而房间就是相对于这一个坐标系作运动的。这里又是前面那个老的、讨论了很多次的问题,即假使知道了一样东西在一个坐标系中的速度,如何决定它在另一个坐标系中的速度。 
    房内的观察者宣称:在我看来,声音在各个方向的速度都是一样的。 
    外面的观察者宣称:在运动着的房间内传播的而用我的坐标系来确定的声音的速度,在各个方向并不相等。在房间运动的方向上的声速比标准声速要大些,在相反的方向上则比较小些。 
    这些结论都是从经典转换推出来的,而且可以用实验来确证。房间把它里面的物质介质,即声音赖以传播的空气带着运动,因此声速对于里面和外面的观察者是不同的。 
    我们还可以根据把声看作是在物质介质中传播的波的理论从而推出另外的结论来。如果我们想要听不到演说者的声音,我们可以这样做(虽然这不是一种最简单的方法):我们相对于演说者周围的空气以大于声速的速度向前奔跑,于是发出的声波永远也不会到达我们的耳鼓了。反之,假使我们忘掉了一句永远不再重复的重要的话,我们必须以大于声速的速度,赶上早已过去了的声波去听到那句话。这两个例子并没有什么不合理的地方,不过所难的是在这两种情况中我们都必须以约40O米每秒的速度奔跑,但是我们可以想象,将来技术的进一步发展,这样的速度是可能实现的。从大炮里发射出来的炮弹的速度实际上比声速大,因而骑在这样一个炮弹上的人便永远听不到发射炮弹的声音。 
    所有这些例子都纳粹是力学性质的,我们现在可以提出一个非常重要的问题了:关于我们刚才对声波所说的一切情况是否可以同样应用于光波的情况呢?伽利略相对性原理和经典转换是否在应用于力学现象的同时也可以用于光的现象和电的现象呢?假如对于这些问题简单地答复一个“是”或“否”,而不深究它们的意义,那是很危险的。 
    在相对于外面观察者作匀速直线运动的房间中的声波的例子中,插入下面两段话对于我们的结论是非常重要的: 
    运动着的房间带着传播声波的空气一起运动。 
    在相对作匀速直线运动的两个坐标系中所观察到的速度是用经典转换联系起来的。 
    光的相应问题必须提得稍微不同一点:室内的观察者不再是说话,而是向各个方向发出光信号或光波。我们进一步假定发出信号的光源是永远静止在房间里的。光波在以太中运动正如声波在空气中运动一样。 
    房间是否带着以太一起运动,像带着空气一起运动那样呢?因为我们没有以太的力学结构,所以很难答复这个问题。假如房间是封闭的,里面的空气便不得不随着它运动。假如想象以太也如此,很明显,这是毫无意义的,因为所有的物质都浸在它里面,而且它是穿透到任何地方去的。任何的门都关不住以太。所谓“运动着的房间”,现在的意思只是指光源跟它严密地相联系的运动着的一个坐标系而已。可是我们并非绝对不能想象房间的运动把光源和以太带着一起运动,正如关着的房间把声源和空气带着一起运动一样。但是我们也可以同样好地想象出一种相反的情况:房间在以太中通过,正如船在绝对平静的海中通过一样,不把介质的任何部分带走而只是通过它而已。在我们的第一种图景中,房间带着光源运动,也带着以太运动。在这种情况中,可以把光波比拟为声波,因而可以得出完全相似的结论来。在我们的第二种图景中,房间带着光源运动,但不带着以太运动。在这种情况中就不能和声波比拟了,因而在声波的例子中所得出的结论便不能应用于光波。这是两个极端的可能性。我们还可以想象更复杂的可能性,例如以太只是部分地被带有光源的房间的运动所带走。但是我们在对这两种比较简单的极端情况作出实验并指出哪一种比较有利以前,没有理由讨论更复杂的假定。 
    我们从第一种想象开始,并暂且假定严密地联结于光源的运动着的房子把以太一起带走。假如我们相信那简单的应用于声波速度的转换原理,现在我们也可以把前面的结论应用到光波里来。我们没有理由怀疑简单的力学的转换定律,这个定律不过是说在某种情况中速度必须相加,在别的情况中速度必须相减。因此我们暂时认定和光源一起运动的房子带着以太走,同时认定经典转换。 
    如果我们点起灯来,光源是严密地跟我们的房间相联系的,信号的速度为著名的实验值3。0×105公里每秒。外面的观察者会注意到房间的运动,因而也就注意到光源的运动,并且注意到以太是被带着走的,他必然会得出这样的结论:在我所处的外面的坐标系中,光在不同的方向上的速度是不同的。在房间运动的方向上比标准光速要大,在相反的方向则较小。我们的结论是,假如以太被带着光源而运动的房间所带走,而且假定力学定律是有效的,则光速必定与光源的速度有关。假如光源朝着我们运动,则光从运动的光源到达我们眼睛的速度就会较大,假如光源背离我们而运动,光速就会较小。 
    假如我们的速率能比光速更大,那么我们可以逃避开光的信号。我们可以赶上早先已经发送出去的光波,而看到过去所发生的事件。我们赶上它们的次序正和当初发送它们的次序相反,而我们在地球上所发生的一系列事件,看来就会像一个倒映的电影片一样从故事的结局开始。这些结论都是从“运动的坐标系把以太带走以及力学转换定律是有效的”这样一个假设中推导出来的。如果这些结论能成立,光和声之间的比拟就是完整的了。 
    但是没有任何形迹足以说明这些结论是真实的,恰恰相反,为了证明这些结论而作的所有观察反而否定了它们。因为光速的数值太大,要直接做一个实验有很多技术上的困难,所以这个判决是从颇为间接的实验中得来的,不过它是明确而完全无可怀疑的。不论发射的光源是不是在运动或它是怎样运动的,在所有的坐标系中光速都是相同的。 
    这个重要的结论可以从许多实验中得出来,我们不准备描述这些实验。但是我们可以作出一些非常简单的论证,虽然它不能证明光速与光源的运动无关,但它能使人觉得这种情况是可信而又可以理解的。 
    在我们的行星系中,地球与其他的行星都绕着太阳运动。我们不知道是否还存在着与太阳系相似的旁的行星系。不过还存在着许多所谓双星系,它们是由两个星球组成并围绕着同一个点转动,这个点称为双星的质心。对这种双星的观察表明,牛顿的引力定律是有效的。现在假定光的速率跟发射体的速度有关,那么从星球发出的光是快是慢,就要看星球在发光时的速度怎样。在这个情况中,整个运动就会非常混乱,而且在很远的双星的情况中,根本不可能确认那主宰我们整个行星系运动的同一个万有引力定律的有效性了。 
    我们再来考察另一个根据非常简单的观念来做的实验。设想有一个旋转得很快的轮子。根据我们的假定,以太被轮子的运动所带走,并且是参与运动的,通过轮子旁边的光波的速率会因轮子的静止或运动而有所不同。静止的以太中的光速和被轮子的运动所带动的以太中的光速有所不同,正如声波的速度在无风的和有风的日子有所不同。但是没有探测到这样的差异!不论我们从哪一个角度来探讨这个问题,不论我们设计出什么样的判决实验,结果总是跟以太被运动所带走的假定相矛盾。因此,我们借助于一些更详细的专门论证作出如下的考察结果: 
    “光的速度与光源的运动无关。 
    不能认定运动的物体带动周围的以太。” 
    因此我们必须放弃声波与光波的
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!