按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
的现象出现,这种现象从微粒说的观点来看是很费解的。光亮和黑暗之间不再有明显的区分了,光成为一连串的亮环与暗环,渐渐消失于暗的背景中。环的出现正是光的波动说的最好表征。对于亮环和暗环相互交替的原因,要在一个稍微不同的实验里才会得到清楚的解释。假设我们有一张黑纸,纸上有两个针孔,让光通过这两个小孔,如果两孔非常接近又非常小,而且单色光的源非常强,则在墙上会现出许多亮带与暗带来,它们在边上渐渐消失于暗的背景中。解释是很简单的,暗带就是从一个针孔射出的波的谷和从另一个针孔射出的波的峰相遇之处,因为它们是相互抵消的。亮带则是从不同针孔里射出来的两个波的两谷或两峰相遇之处,因为它们是相互加强的。若是在前一例子中,我们对暗环与亮环的解释就要复杂得多,因为那里所用的是只有一个孔的屏,但原理是一样的。通过两个孔就现出亮带和暗带,通过一个孔便现出暗环和亮环,这个现象必须牢牢记住,因为以后我们还要转回来讨论这两个不同的图景。这个实验显示出了光的衍射,即把小的孔或小的障碍物放在光波行进的路线上时,光的直线传播就发生偏移(参看书末的附图Ⅱ)。
利用一点儿数学我们还可以大大往前走一步,我们可以求出,要多大或者不如说要多小的波长才能产生这样的衍射花样。因此这里所描述的实验,使我们能够测量作为光源的单色光的波长。要知道这个数是如何的小,我们可以指出太阳光谱中可见光的两个极端的波长,那就是红光与紫光的波长。
红光的波长是0.00008厘米,
紫光的波长是0.00004厘米。
我们不必惊异这些数字这样小。我们所以能在自然界中观察到清晰的影的现象,也就是光的直线传播的现象,正是因为通常所有的孔和障碍物比起光的波长来都大得多的缘故。只有用极小的障碍物与孔,才能显示光的波动的性质。
但是寻求一个光的理论的故事还没法终结,19世纪的判决不是一个终审的判决。在现代物理学家看来,要在微粒与波动之间作出判断的整个问题仍然是存在的,不过现在来判断这个问题要采取一种更深刻更复杂的形式了。在没有看到波动说胜利的可疑点以前,我们暂且承认微粒说的失败。
光波是纵波还是横波
我们在前面考察过的一切光学现象都是支持波动说的。光会弯曲而绕过小的障碍物,以及对折射的解释,就是支持它的有力论据。如果以机械观作为指导思想,那么还需要答复一个问题,就是怎样来决定以太的力学性质。要解答这个问题,必须先知道以太中的光波是纵波还是横波。换句话说,光是像声一样传播的吗?光波是由于介质密度的变化,而使得粒子向波传播的方向作振动的吗?还是以太是一种弹性胶质物那样的介质因而只能产生横波,并且它的粒子的运动方向跟波本身传播的方向是垂直的吗?
在解决这个问题之前,我们试决定哪一个答案比较好些。很明显,若光波是纵波,那真是再好不过了,因为在这个情况下来设计一种力学的以太便简单得多了。以太的图景大概跟解释声波传播的气体的力学图景相似,要构成能传播横波的以太的图景就困难多了。要想象一种胶质物作为一种由粒子组成的介质,由它来传播横波,这不是一件容易的事。惠更斯相信以太会是“气状”的而不是“胶状”的,但是自然界毫不理会我们给它的限制。在这件事情上,自然界会容许物理学家力图用机械观来了解所有的现象吗?要回答这个问题,我们必须讨论几个新的实验。
我们只详细讨论许多实验中的一个,这个实验能够提供给我们一个答案。假设我们有电气石晶体的一片薄片,它是用一种特殊的方式切出来的,切的方法我们不需要在这里描写。晶体的薄片必须薄得使我们通过它可以看见一个光源。现在我们取这样的两块薄片把它们都放在眼睛与光之间,我们会看到什么呢(图41)?假如两薄片都足够地薄,便又可以看到一个光点。这样的机会很多,实验符合了我们的期望,我们不必担心这一实验报告可能是由于偶然的机会所造成的。让我们假定我们是通过两个晶体片看见一个光点的,现在我们慢慢转动一个晶体片来改变它的位置。但转动时所绕的轴的位置必须是固定不变的,这样上面这句话才有意义。我们以入射光所定出的线为轴。这就是说,我们移动了一个晶体片上所有的点的位置,只有轴上的点的位置不变。一件奇怪的事发生了!光愈来愈弱,最后完全消失。假如继续转动,它又会再现出来,而等到回到最初的位置时,又重新恢复最初的景象。
我们用不着详细描述这个实验及其他类似的实验就可以提出下面的问题:如果光波是纵波,能够解释这些现象吗?在纵波的情况下,以太的粒子必须和光束一样沿轴运动。如果晶体转动,沿轴线的点并不发生变化。轴上的点没有运动,只有在其附近发生很小的位移而已。因此对于纵波来说,决不可能发生光消失和光显现的明显变化。这个现象以及诸如此类的现象,只有假定光波不是纵波而是横波才能解释!换句话说,我们必须假定“胶状”的以太。
这是很令人遗憾的,我们如果企图用力学来描述以太,那么必须做好面临极大困难的准备。
以太与机械观
为了拭图理解作为传播光的介质以太的力学性质,物理学家曾经做过各种各样的努力,如果都要讨论它,就会写成一本很长的历史书。我们知道,力学上的解释是指物质是由粒子组成的,沿着它们之间的连线上有力作用着,而这个力只与距离有关。为了把以太说成是一种“胶状”的机械的物质,物理学家必须作一些根牵强和不合理的假定。这里我们不准备把这些假定引出来,因为它们早已过时了,而且差不多已经被人遗忘了,但其结果却是有重要意义的。所有这些假定是那样的不合理,还要引入那么多,而且它们相互之间又毫无关联,这些情况都足以动摇我们对机械观的信念。
把以太说成是胶状的物质已经很困难了,但是还有其他更简单的反对它的理由。假如要用力学方法解释光学现象,必须假定以太到处存在。假如光只能在介质中通过,那么便不能有真空的空间。
但是我们由力学知道,星际空间对物体的运动并没有阻力。例如行星在“以太胶质物”中运动便没有受到任何阻力,但物质介质必然会阻止物体的运动。如果以太不阻碍物质的运动,那么说明以太粒子和物质粒子之间没有任何相互作用。光通过以太,也通过玻璃与水,但在后面两种物质里它的速度却变了。怎样能够用力学方法解释这些论据呢?很明显,只能假定以太粒子与物质粒子之间有相互作用。我们刚才已经知道,对自由运动的物体来说,必须假定这种相互作用不存在。换句话说,在光学现象中以太与物质之间有相互作用,而在力学现象中却没有!这显然是一个很自相矛盾的结论。
看来,摆脱这些困难只有一条出路。在20世纪以前的整个科学发展过程中,为了企图根据机械观去理解自然现象,必须引入许多虚假的物质,如引入电流体、磁流体、光微粒、以太等。其结果只是把所有的困难集中在主要的几点上,例如光学现象中的以太即为一例。这里所有想简单地构成以太学说的企图都没有成功,再加上别的反对意见,于是我们觉得,错误的根源似乎在根本假设上,即我们不应该认为可以用机械观解释一切自然现象。科学未能彻底实现机械观的预言,现在已经没有一个物理学家再相信它有实现的可能了。
前面对主要的物理观念所作的简单回顾中,我们遇到了一些没有解决的问题,面临着一些困难与阻碍,使我们不敢再提出一种对描述外在世界的一切现象都能完全一致的观点。在经典力学中,有一个没有人注意到的线索——引力质量与惯性质量相等。那里还有电流体和磁流体的不真实的性质存在,那里对于电流与磁针之间的相互作用也是一个尚未解决的困难。我们可以回忆一下,这种力不在连接导线与磁极的直线上作用,而且它跟运动着的带电体的速度有关,表述它的方向与数值的定律又极端复杂。最后还有关于以大的巨大困难。
现代物理学已经解决了所有这些问题,但是在解