按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
快速仲裁和选择,大大提高了总线的利用率;
读写数据流,把数据传输的开销降到最低;
流控制,提高总线利用率。
光纤通道
光纤通道(FibreChannel)其实是对一组标准的称呼,这组标准用以定义通过铜缆或光缆进行串行通信从而将网络上各节点相连接所采用的机制。光纤通道标准由美国国家标准协会(AmericanNationalStandardsInstitute,ANSI)开发,为服务器与存储设备之间提供高速连接。早先的光纤通道专门为网络设计的,随着数据存储在带宽上的需求提高,才逐渐应用到存储系统上。光纤通道是一种跟SCSI或IDE有很大不同的接口,它很像以太网的转换开头。光纤通道是可以提高多硬盘存储系统的速度和灵活性而设计的高性能接口。
光纤通道是为在像服务器这样的多硬盘系统环境而设计。光纤通道配置存在于底板上。底板是一个承载物,承载有印刷电路板(PCB)、多硬盘插座和光纤通道主机总线适配器(HBA)。底板可直接连接至硬盘(不用电缆),并且为硬盘提供电源和控制系统内部所有硬盘上数据的输入和输出。
光纤通道可以采用铜轴电缆和光导纤维作为连接设备,大多采用光纤媒介,而传统的铜轴电缆如双绞线等则可以用于小规模的网络连接部署。但采用铜轴电缆的光纤通道有着铜媒介一样的老毛病,如传输距离短(30米,取决于具体的线缆)以及易受电磁干扰(EMI)影响等。
虽然铜媒介也适用于某些环境,但是对于利用光纤通道部署的较大规模存储网络来说,光缆是最佳的选择。光缆按其直径和“模式”分类,直径以微米为计量单位。电缆模式有两种:单模是一次传送一个单一的信号,而多模则能够通过将信号在光缆玻璃内核壁上不断反射而传送多个信号。现在认可的光缆光纤通道标准和等级有:直径62。5微米多模光缆175米,直径50微米多模光缆500米,以及直径9微米单模光缆10公里。
光纤现在能提供100MBps的实际带宽,而它的理论极限值为1。06GBps。不过现在有一些公司开始推出2。12Gbps的产品,它支持下一代的光纤通道(即FibreChannelII)。不过为了能得到更高的数据传输率,市面的光纤产品有时是使用多光纤通道来达到更高的带宽。
光纤通道优点:
连接设备多,最多可连接126个设备
低CPU占用率
支持热插拔,在主机系统运行时就可安装或拆除光纤通道硬盘
可实现光纤和铜缆的连接
高带宽,在适宜的环境下,光纤通道是现有产品中速度最快的。
通用性强
连接距离大,连接距离远远超出其它同类产品
光纤通道缺点:
产品价格昂贵
组建复杂
SATA接口
SATA是SerialATA的缩写,即串行ATA。这是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而得名。SATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
与并行ATA相比,SATA具有比较大的优势。首先,SerialATA以连续串行的方式传送数据,可以在较少的位宽下使用较高的工作频率来提高数据传输的带宽。SerialATA一次只会传送1位数据,这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,SerialATA仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其次,SerialATA的起点更高、发展潜力更大,SerialATA1。0定义的数据传输率可达150MB/sec,这比目前最块的并行ATA(即ATA/133)所能达到133MB/sec的最高数据传输率还高,而目前SATAII的数据传输率则已经高达300MB/sec。
SerialATA规范不仅立足于未来,而且还保留了多种向后兼容方式,在使用上不存在兼容性的问题。在硬件方面,SerialATA标准中允许使用转换器提供同并行ATA设备的兼容性,转换器能把来自主板的并行ATA信号转换成SerialATA硬盘能够使用的串行信号,目前已经有多种此类转接卡/转接头上市,这在某种程度上保护了我们的原有投资,减小了升级成本;在软件方面,SerialATA和并行ATA保持了软件兼容性,这意味着厂商丝毫也不必为使用SerialATA而重写任何驱动程序和操作系统代码。
另外,SerialATA接线较传统的并行ATA(ParalleATA)接线要简单得多,而且容易收放,对机箱内的气流及散热有明显改善。而且,SATA硬盘与始终被困在机箱之内的并行ATA不同,扩充性很强,即可以外置,外置式的机柜(JBOD)不单可提供更好的散热及插拔功能,而且更可以多重连接来防止单点故障;由于SATA和光纤通道的设计如出一辙,所以传输速度可用不同的通道来做保证,这在服务器和网络存储上具有重要意义。
而SATAII是在SATA的基础上发展起来的,其主要特征是外部传输率从SATA的1。5Gbps(150MB/sec)进一步提高到了3Gbps(300MB/sec),此外还包括NCQ(NativemandQueuing,原生命令队列)、端口多路器(PortMultiplier)、交错启动(StaggeredSpin…up)等一系列的技术特征。单纯的外部传输率达到3Gbps并不是真正的SATAII。
SATAII的关键技术就是3Gbps的外部传输率和NCQ技术。NCQ技术可以对硬盘的指令执行顺序进行优化,避免像传统硬盘那样机械地按照接收指令的先后顺序移动磁头读写硬盘的不同位置,与此相反,它会在接收命令后对其进行排序,排序后的磁头将以高效率的顺序进行寻址,从而避免磁头反复移动带来的损耗,延长硬盘寿命。另外并非所有的SATA硬盘都可以使用NCQ技术,除了硬盘本身要支持NCQ之外,也要求主板芯片组的SATA控制器支持NCQ。此外,NCQ技术不支持FAT文件系统,只支持NTFS文件系统。
由于SATA设备市场比较混乱,不少SATA设备提供商在市场宣传中滥用“SATAII”的现象愈演愈烈,例如某些号称“SATAII”的硬盘却仅支持3Gbps而不支持NCQ,而某些只具有1。5Gbps的硬盘却又支持NCQ,所以,由希捷(Seagate)所主导的SATA…IO(SerialATAInternationalOrganization,SATA国际组织,原SATA工作组)又宣布了SATA2。5规范,收录了原先SATAII所具有的大部分功能——从3Gbps和NCQ到交错启动(StaggeredSpin…up)、热插拔(HotPlug)、端口多路器(PortMultiplier)以及比较新的eSATA(ExternalSATA,外置式SATA接口)等等。
值得注意的是,部分采用较早的仅支持1。5Gbps的南桥芯片(例如VIAVT8237和NVIDIAnForce2MCP…R/MCP…Gb)的主板在使用SATAII硬盘时,可能会出现找不到硬盘或蓝屏的情况。不过大部分硬盘厂商都在硬盘上设置了一个速度选择跳线,以便强制选择1。5Gbps或3Gbps的工作模式(少数硬盘厂商则是通过相应的工具软件来设置),只要把硬盘强制设置为1。5Gbps,SATAII硬盘照样可以在老主板上正常使用。
SATA硬盘在设置RAID模式时,一般都需要安装主板芯片组厂商所提供的驱动,但也有少数较老的SATARAID控制器在打了最新补丁的某些集成了SATARAID驱动的版本的WindowsXP系统里不需要加载驱动就可以组建RAID。
SATA相较并行ATA可谓优点多多,将成为并行ATA的廉价替代方案。并且从并行ATA完全过渡到SATA也是大势所趋,应该只是时间问题。相关厂商也在大力推广SATA接口,例如Intel的ICH6系列南桥芯片相较于ICH5系列南桥芯片,所支持的SATA接口从2个增加到了4个,而并行ATA接口则从2个减少到了1个;而ICH7系列南桥则进一步支持了4个SATAII接口;下一代的ICH8系列南桥则将支持6个SATAII接口并将完全抛弃并行ATA接口;其它主板芯片组厂商也已经开始支持SATAII接口;目前SATAII接口的硬盘也逐渐成为了主流;其它采用SATA接口的设备例如SATA光驱也已经出现。
值得注意的是,无论是SATA还是SATAII,其实对硬盘性能的影响都不大。因为目前硬盘性能的瓶颈集中在由硬盘内部机械机构和硬盘存储技术、磁盘转速所决定的硬盘内部数据传输率上面,就算是目前最顶级的15000转SCSI硬盘其内部数据传输率也不过才80MB/sec左右,更何况普通的7200转桌面级硬盘