按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
关于现象回归概念的结论
这些实验(一方面是考夫卡…哈罗尔和盖尔布,另一方面是杨施一缪勒)清楚地归属在一起。最后,讨论一下恒常性或现象回归也许是明智的。两只圆盘d1和d2的表面差异显然与它们的反照率差异相一致(这是它们“实际”呈现的面目),而不是与它们的刺激差异相一致,因为在这一例子中,刺激差异为零。但是,在两个最初的实验中,这样一种观点是行不通的,因为该结果并不依赖于通过空洞看到的屏幕的反照率,而是依赖于经由空洞的辐射。所以,我不能同意索利斯的主张,他认为应当把“实际物体的现象回归”替代“恒常性”这个术语,以指明整个范围的事实。索利斯在1934年确实对恒常性这个术语提出过十分机智的批评,他指出,这个术语在许多情形里没有任何确切意义,相反,他自己的术语(即“实际物体的现象回归”)倒是有意义的。但是,正如刚刚讨论过的这些情况那样,它们属于同一范围,证明索利斯的术语也未能把一切事实都包括进去。
考夫卡和哈罗尔对盖尔布原始实验的修正
迄今为止我们所引证的一些实验未曾考虑到盖尔布的研究,而事实上,我们是把它作为我们理论的出发点的(见边码p.245)。现在,让我简要地报道一下由我本人和哈罗尔进行的一些尚未公开发表的实验。我们的这些实验抱有明确的目的,即检验我对盖尔布效应的解释。在这一实验中,有三个场部分(A、B和C),黑暗的房间,照明的黑色圆盘,以及同样照明的白色纸条。于是,辐射是A:B=B:C=1:60。如果把C略去,B便呈现白色;一俟把C引入以后,B就看上去黑而亮,对此变化可用下列事实解释,即B是由梯度BC来决定的。如果这种解释正确,那么B就不再显示黑色,只要C:B的关系小于60:1,也就是说,只要人们用灰色纸条代替白色纸条;纸条越是不白,黑色圆盘(B)就越表现出不黑;不过,纸条本身看上去仍呈白色,尽管不太亮,原因在于以下事实,即C:A的关系仍然大于60:1。这个预期得到了证实,B的外观黑色(因而它的恒常性)是C的反照率的函数。在盖尔布实验的原始条件下,以及在具有空洞颜色的条件下,A是一个黑色的未被照明的屏幕,通过一个孔,B和C可被看到。
让我们再次使用先前用过的阐述方法,我们可以说:如果光照60i看上去是白色;那么,光照i就看上去呈黑色了;如果30i呈白色,那么i就呈灰色。我们在这一情形中的阐述要比在先前情形中的阐述更为恰当,因为我们懂得为什么C(60i、30i等)看上去呈白色。
我们还可以把盖尔布的实验颠倒过来。在一般条件下,我们有三个面即A、B和C,于是,现在是A:B=B:C=60:1。A是强烈照明的白色背景,B是一个与其边缘线相合的阴影中的白色圆盘,C是与圆盘接近并处在阴影区里的黑色或灰色纸条。如果A和B单独展示,那么A将呈现白色,B将呈现黑色。现在,以这种方式把C引进来,BC归属在一起,B就变成白色;再者,如果B:C小于60:1,那么,8就变成更浓的黑色。
运用洞孔颜色,这种预示得到证实,尽管需要更强的措施来保证B和C比原先情形更加归属在一起。我们用了一套与盖尔布的实验装置相一致的装置,最后未能得到这种结果,也就是说,引入黑色纸条并不改变阴影中的白色圆盘的外观。我不想解释这种出乎意料的结果,我只想补充,相等的强度梯度具有不同的结果,主要根据受影响的部分是在梯度的顶部还是在梯度的底部。正如我们从其他实验中得知的那样,把中等灰色作为中心,黑白系列在功能上并不对称。
浅黑色和深白色之间的功能差异与同样的刺激强度相一致
看来,剩下来的问题是,用我们的理论可以解释多少事实。这个任务超越了本章的范围,这里,我们仅仅讨论其中一点。在我们讨论知觉的一些地方,我们曾试图用一些功能的事实去证明纯现象学的事实。在目前这个领域,我们也想照此实施。如果与相等的局部刺激相一致的视野的两个区域看上去不同,那么,除了它们的外观以外,它们在其他特性中是否也不同呢?实际上,人们已经发现了下列三种结果,第一种是由盖尔布(1920年)发现的结果,他在实验中用了两名精神错乱的病人,如第四章(见边码p.118)所报道的那样。需要记住的是,这些病人并不观看表面,而是物体的颜色始终具有一定的厚度,颜色越黑,厚度越大。这些病人便拥有颜色恒常性了。例如,如果让他们操作边码P.249(图77)上描述的实验,那么,反射同样光量的两只圆盘d1和d2如同常人看来那样看上去是彼此不同的。与此同时,颜色的“厚度”规律仍然站得住脚:d1看上去更黑,但比d2更厚。由此可见,具有相等局部刺激的两个表面不仅看来彼此不同,而且根据它们不同的外观,其组织也不同(盖尔布,1920年,p.241)。
第二个实验是由明茨(Minta)和我本人实施的。如果白色是比黑色更刺目的颜色〔这是从第四章(见边码p.127)解释的意义上说的」,那么盖尔布的结果看来便可以得到解释了;也就是说,如果白色具有更强的组织力和内聚力的话,则盖尔布的结果便可以得到解释了。在一般的条件下,白色和黑色之间的这种硬性差别是由我本人和哈罗尔发现的;现在的问题是,它是否也适用于与同样的局部刺激相一致的黑色和白色。我们认为,如果它适用的话,那么,比起由同样的局部刺激产生的白色场来,一个黑色场对于引进一个彩色图形来说应当产生较少的阻力;黑色场比之白色场较少需要颜色。我们的实验证明了这种推论,从而也提供了另一种结果,即两个这样的表面在其中发生差异的结果。
第三种结果是由哈罗尔和我本人发现的(11,p.211)。对非彩色背景上一个彩色图形的颜色浓度来说,如果两者的白色越相似,浓度便越大;在重合点上(这里的重合点就是白色的等同点)浓度达到最高值'参见阿克曼(Ackermann),埃伯哈特(Eber-hardt),G.E.缪勒,1930年Ⅱ'。用明度来对这种结果进行解释是符合习惯的,但是这种解释并未考虑下列事实,即同样的辐射可以产生不同的白色和明度的结合。先前关于彩色图形的颜色浓度或阈限有赖于背景明度的一切实验都是在这样一种情形里进行的,也即图形和背景处于同一平面上,并接受同样的照明,在这种情形里,背景的白色(明度)只能通过它的反照率的变化而变化。可是,哈罗尔和我在非彩色背景上制作了一些图形,我们的方法是将图形和背景的光源分开。这样,方有可能去比较将同样数量的彩色光反射到两个背景上去的两个图形,这两个背景尽管也反射了同样数量的(非彩色)光,但是看上去却是不同的,例如,其中一个背景黑而亮,另一个背景则白而暗。这样一来,不仅这两个图形的颜色看上去彼此不同(这是我们已经提到过的),而且颜色的最大浓度也不再能从那个重合点上获得。在该重合点上,黑色背景上的蓝色看上去比减光相等的白色背景上蓝色更浓,黄色在前者上也比在后者上看来颜色更浓。
颜色恒常性
现在,让我们转向狭义中的颜色恒常性;正如物体的颜色并不随着非彩色照明的强度变化一样,因此,它们也不遵循照明的彩色变化,尽管“颜色恒常性”比“明度恒常性”更不完善。卡兹将这类现象的调查收录在他的第一本伟大著作中,而且恒常性问题也主要地决定了该领域中的科研工作。此外,为了这一理论的缘故,正如我们在明度恒常性讨论中排除了颜色恒常性的讨论一样,我们在颜色恒常性讨论中也将排除明度恒常性的讨论。
最初的实验
让我们进行下列实验:在一堵由彩色光照明的房间的墙旁,我们安置了一个非彩色圆盘d1,离这圆盘不远处的墙壁上有一开口,通向另一间正常照明的房间,在这开口后面的那个房间内,我们安置了第二个非彩色圆盘d2,以遮住来自第一个房间的彩色照明。这样一来,d1反射了彩色照明的光,d2则反射非彩色光。在这些条件下,d1看来或多或少是非彩色的,而d2则以一种彩色出现,作为对照明彩色的补充,而且,照明的颜色越浓,两种照明的发光度越是差不多相等