按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
安糠纸子谑艿礁扇牛蛘哂胪夹尾糠窒啾缺慌懦庠谑导实氖右爸猓ㄕ缥乙丫谝桓鍪旨虻サ氖笛橹兄该髁说哪茄谡饫锸÷粤烁檬笛椋庖皇率邓坪跻怖醋院A郑℉ering)的早期实验(1920年)。
图形-背景清晰度的动力学
现在,我们必须提出一个问题,也就是决定图形-背景组织的定律问题。这个问题包含两个方面:(1)为什么场以这种特定的方式来组织;(2)场的哪些部分会成为图形,哪些部分会成为背景?对此,人们已经完成的实验不多,从这些实验中,我们可以为解答这个问题收集一些资料。然而,即便是已经完成的这些实验也只涉及第二方面。因此,对任何一种情形里获得的所有条件进行完整的研究是十分重要的。我们将步步为营,用特定的例子作为开端,并逐步限定我们的范围。
让我们以我们先前的讨论中用过的模棱两可图形作为开端。最简单的图形是各种形式的十字形,而且,对这些十字形来说,其特征表现在,除了十字形的影线以外,图形的所有轮廓也是背景的轮廓,而图形却具有背景所没有的一些轮廓。那么,在上述条件所界定的图样里,有没有条件决定哪些部分将属于图形,哪些部分将属于背景呢?在我们迄今为止已经加以利用的完全对称的图样中,显然不存在这种条件。在此情形里,如果我们忽视了颜色的差别,那么,就不可能存在有利于两种组织中的任何一种的客观因素。但是,我们可以对这些图样稍加改变,以牺牲一种组织为代价,使之有利于另一种组织。
(
1)作为一种决定因素的定向
我们将它们作不同的定向,使一个十字位于一种有利的位置,一对臂呈垂直方向,另一对臂呈水平方向,而使另一个十字形的各条臂处于倾斜方向。于是,前者与后者相比处于有利位置。这一事实尽管是由鲁宾(Rubin)发现的,但是却从未由统计实验证实过;但是,仅仅从检验角度讲,我可以确定无疑地说,这是一个真实的事实。它的重要性相当之大,因为它表明了一个较小的场的组织有赖于场外的一些因素,例如一般的定向。确切地说,它表明空间中存在一些主要的方向,也就是水平方向和垂直方向,这些方向通过比在其他方向上使图形组织更加容易而对组织过程施加一种实际的影响。我们可以用此方式来系统阐述我们的结果,这是因为,不论我们见到的是哪一种十字形,背景始终是对称地分布在所有方向上,从而在十字形后面形成一个完整的圆形或方形。
(
2)相对大小
这里,我们获得了一条对组织本身来说固有的定律:如果所有的条件是这样的,即在较大和较小的单位之间产生分离,那末,在其余条件保持木变的情况下,较小的单位成为图形,较大的单位成为背景。
这种阐述,听起来似乎有点道理,实际上是不恰当的。一方面,它忽略了一个必要条件,另一方面,严格地说,它用未经证明的假定来论证。我们用后一个论点作为开端,因为它把我们直接引向第一个论点。我们已经看到,背景并不受到图形的干预,它在图形后面伸展着,因此总是比图形大一些。于是,在我们的上述图形里,当具有宽臂的十字形被视作为图形时,其背景仍然很大,这是因为,根据双重呈现(double
representation),十字形不仅包括狭臂,也包括宽臂。因此,我们的大小定律能够这样被阐述:如果条件是这样的,即可以看到一个较小的图形或一个较大的图形,那么,在其余条件保持不变的情况下,前者将被视作图形。但是,这样一种陈述并没有为我们提供任何顿悟去了解该过程的实际的动力(dynamics)。然而,我们仍然可以用不同的方式来陈述我们的定律:如果条件是这样的,即两个场部分彼此分离,接着发生双重呈现,那么,在其余条件保持不变的情况下,图形将以这样一种方式产生,即在图形的面积和背景的面积之间的差别为最大时产生,或者,用更为简单的表述方式来讲:图形将尽可能地小。这种系统阐述不只是一种关于事实的陈述,它还包含了一个动力的原因(dynamical
reason),我们将在进一步研究双重呈现时见到。如果没有双重呈现的话,我们的相对大小律就不再站得住脚,正如图61所示,其中那条小的黑色条子不再位于矩形的白色背景上了。这里,不论是白色长方形还是黑色条子,都是图形,我们在协调中获得了双重形式。不过,在我们继续这个讨论之前,先引入一个新的因素。
(
3)正在闭合和已经闭合的区域
在图62里面,多角形轮廓之内的部分可被视作为图形,而多角形轮廓之外的部分将不会被视作为图形,尽管后者比前者小。鲁宾已经陈述过这样一条定律,如果两个区域被这样分离,即一个区域把另一个区域封闭起来,那么正在闭合的区域将成为背景,而已经闭合的区域便成为图形。这条定律可以根据组织的动力学来理解。我们知道,按照双重呈现,背景充斥了整个区域。换言之,在背景被见到的那些地方,没有与之相对应的部位刺激(local
stimulation)。由此可见,背景的组织是一个过程,这一过程与我们在盲点(blind Spot)实验中研究过的过程相类似,也与在偏盲(hemianopic)患者的实验中研究过的那些过程相类似(见边码pp.144ff.)。现在,我们理解了相对大小因素和闭合因素。在一个特定的区域内,即将成为背景的那个部分越大,它就越不要求“完整”。背景由外朝里闭合比起由里朝外闭合,前者更加容易一些。在前者的情形中,由各条边确定的一个区域必须通过聚合(convergence)来充斥,而在后者的情形中,必须通过分离(divergence)来充斥。聚合有其范围,这是由背景本身中的消失部分界定的。然而,分离的范围却不是这样决定的;正如图62所示,如果它由圆形轮廓来决定的话,那么,圆形轮廓和多边形之间的那些部分便会成为图形,这一决定将产生自图形的边界,而不是产生自背景的边界。背景必须到达这条边界,而不是被拖向这条边界,它是从核心地点出发被推向这条边界的。
这些纯理论性推论在描述中找到了一个对应部分。冯·霍恩博斯特尔(Von Hornbostel)强调了凹面体和凸面体之间差异的普遍性,以及包围和入侵之间差异的普遍性,这些差异是与背景-图形差异相一致的。如同每个场部分的动力那样,这些力量至少模糊地反映在意识中,也就是说,反映在行为环境的特性之中。
(
4)能量的密度
我们的第一个因素主要通过决定图形来决定图形-背景的清晰度,我们的第三个因素则显然直接通过背景而发生作用。那么,第二个因素(即相对大小的因素)的情况又如何呢?迄今为止,我们是把它作为一个“背景的决定因素’来处理的,但是,相对大小因素也会直接通过图形来起作用。在某些条件下,正如苛勒于1920年表明的那样,作下列假设似乎是有道理的,即在一定的区域之内,图形和背景的制作能量是相等的。那就是说,如果我们在一个较大的背景上有一个较小的图形,那么,图形中的能量密度一定比背景中的能量密度大一些,而且与背景区域和图形区域之比成一定比例。因此,图形应以较大的能量密度来界定,这一定义与实验证明了的图形特征是完全符合的(阈限和双目竞争实验;见边码,pp.187-190)。很清楚,在一个恒常的场里面,图形部分的区域越小,与有关的背景部分相比,其相对的能量密度就越大。如果条件规定,前者的能量密度比后者的能量密度更大是一个必要条件的话,那么,较小部分必定是图形无疑。然而,只有当该条件既适用于图形之外的背景,又适用于图形之后的背景时,该条件才能被作为必要条件,否则,该条件就会被我们的上述图样所扰乱。于是,我们关于小图的原则也失去了其价值,因为该图形始终是比较小的,正如我们在上面认为的那样。但是,如果我们能够将此陈述为组织发生的一条定律(至少在某些条件下,我们以这样一种方式来陈述,即图形尽可能成为一个图形),那么,相对大小通过其对能量密度的影响而具有直接的图形效应。这就意味着,存在着所谓“图形化”程度(degrees
of figuredness),我们可