按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
,你的朋友又开玩笑地说:“这个数不是4。”有了这条信息你赌赢的机会再次改变,变成了1 / 2,即5 0%的概率。在这种简单的关系中,你已经实施了贝叶斯的分析方法。每一条新信息都会影响你原来的概率假设,这就是贝叶斯推理。
贝叶斯分析法试图将所有可得信息都融入推理或决策过程中从而对潜在本质情况进行判断。学院使用贝叶斯定理帮助他们的学生研究决策。在大学课堂里贝叶斯定理被广泛地称之为
决策三段论。三段论中的每一分支都代表新的信息,这些信息反过来会改变决策中的力量对比关系。查理·蒙格说:“在哈佛商学院,将第1年的学生捆绑在一起的数学课程就是被称做决策三段论的课程。他们所做的事情就是将高中所学的代数知识应用到现实问题中去。学生非常喜欢这门课。他们惊奇地发现高中代数在生活中发挥着功效。”
对概率的主观判断
正如查理所指出的,基础代数在计算概率时非常有用。但要把概率理论应用到实际投资当中去,还需要对数字计算的方法有更深刻的理解。特别是要注意频数这一概念。
掷硬币猜中头像一面的概率为1 / 2,这意味着什么呢?或者说掷骰子单数出现的概率为1 / 2,这又是什么意思呢?如果一个盒子里装有7 0个绿色大理石球, 3 0个蓝色大理石球,为什么蓝色大理石球被捡出的概率为3 / 1 0?上面所有的例子在概率发生事件中均被称为频率分析,它是基于平均数的法则。如果一件不确定事件被重复无数次,事件发生的频数就会
被反映在概率中。例如,如果我们掷硬币1 0万次,预计出现的头像次数是5万次。注意我没有使用它将等于5万次。按无限量大的原理只有当这个行为被重复无数次时,它的相对频数与概率才趋向于相等。从理论上讲,我们知道投掷硬币得到“头像”这一面的机会是1 / 2,但我们永远不能说两面出现的机会相等,除非硬币被掷无数次。
在我们解决任何不确定因素的问题时,很明显我们永远都不能给出绝对肯定的答案。但是如果这个问题界定得当,我们应该能够列出所有可能发生的结果。如果这个不确定事件被反
复重复,这些结果的频数应该能反映出不同结果的概率。但是当我们考虑的是只发生一次的事件时,问题就来了。
我们怎样预测明天科学考试通过的概率?或者是绿湾派克队重新夺取超级碗橄榄球冠军的概率?我们面临的问题是,这些事件都是独一无二的。我们可以回顾绿湾队比赛的整体配队
阵形,但我们还是没有准确的每个球员重复配合在相似条件下打球的一一对应资料。我们可以回顾过去科学考试的情况从而了解他们考试的状况,但每次考试的情况是不同的,对他们的了解也是不连贯的。
没有重复性的试验就无法产生频数分布,那么我们怎么来计算概率呢?我们没有办法计算,相反只能依赖对概率的主观判断。而且我们经常这样做。我们可以说派克队夺取大奖赛冠
军的机会是2∶1,或者学生通过那个难度很大的科学考试的机会是1 0∶1。这些是大概性的陈述;他们描述了事情可能发生的“可信度”。当某一事件不可能被重复多次以得出基于频数的概率判断时,我们只能依赖自己的感觉了。
你可能马上就意识到对上述两类事件的主观判断可能都是错误的。在主观概率中,一切都取决于你如何分析你的假设。你先停下来将局面全面想清楚。你得出1 0∶1的考试通过率的
假设是因为考题太难,学生没有充分复习还是因为过份的谦虚?你对派克队的一贯忠诚和信赖是否遮住了你的双眼使你对其他球队的超级力量视而不见?按照教科书里所传授的贝叶斯分析法,如果你的假设分析是理智的,那么将你的主观概率与频数概率等同起来是“完全可以接受的”。你所要做的工作就是筛除不理智、不符合逻辑的假设而保留理智的假设。如果你认为主观概率方法充其量不过是频数概率方法的延伸,这对你是很有帮助的。事实上,在很多情况下主观概率是有增值作用的,因为这种方法允许你将可操作性考虑在决策中,而不仅仅是依赖长期的统计数据规律。
不管投资者自己是否意识到了,几乎所有的投资决策都是概率的应用。为了成功地应用概率原理,关键的一步是要将历史数据与最近可得的数据相结合,这就是行动中的贝叶斯分析法。
具有巴菲特风格的概率论
“用亏损概率乘以可能亏损的数量,再用收益概率乘以可能收益的数量,最后用后者减去前者。这就是我们一直试图做的方法。”巴菲特说:“这个算法并不完美,但事情就这么简
单。”澄清投资与概率论之间的联系的一个有用例证是风险套购的做法。根据《杰出投资家文摘》的报道,巴菲特对风险套购的看法与斯坦福商学院的学生的看法是一致的。巴菲特解释道:“我已经做了4 0年风险套购,我的老板本· 格雷厄姆在我之前也做了3 0年。”所谓风险套购,从纯粹意义上讲,不过是从两地不同市场所报的证券差价中套利的做法。例如,不同种商品和货币在全世界不同的市场上报价,如果两地市场对同种商品报价不同,你可以在这个市场上买入,在另一个市场上卖出并将差价归己所有。
风险套购已成为目前金融领域普遍采用的做法,它也包括对已宣布购并的企业进行套购(有些投机家对未宣布的企业购并也采用套购的做法,但这里巴菲特说“我的职责是分析这些
(已宣布并购)事件实际发生的概率,并计算益损比率。”让我们先来看看下面这个例子,然后再继续聆听巴菲特的教诲。假设阿伯特公司(Abbott pany) 今天的开盘价为每股1 8美元。在上午过半的时候,它宣布今年的某个时候—可能在6个月内,它将以每股3 0美元的价格卖给科斯特洛公司(Costello pany)。阿伯特公司的股价马上抬至每股2 7美元,并在这个价位上走稳徘徊。
巴菲特看到了宣布合并的消息并且必须做出决断。首先他试图分析消息的确定性。有些企业合并的买卖并未能最终实现。董事会可能会出人预料地拒绝合并,或者美国联邦贸易委员会
(Federal Trade mission)会也发出反对的声音。没有人能够十分有把握地说这笔风险套购交易将最终实现。这就是风险所在。
巴菲特的决策过程就是运用主观概率的方法。他说:“如果我认为这个事件有9 0%的可能性发生,它的上扬幅度就是3美元,同时它就有1 0%的可能性不发生,它下挫的幅度是9美
元。用预期收益的2 。 7美元减去预期亏损的0 。 9美元就得出1 。 8美元( 3×9 0%…9×1 0%= 1 。 8 )的数学预期收益。”下一步,巴菲特请你必须考虑时间跨度,并将这笔投资的
收益与其他可行的投资回报相比较。如果你以每股2 7美元的价格购买阿伯特公司,按照巴菲特的计算,潜在收益率为6 。 6%( 1 。 8美元除以2 7美元)。如果交易有望在6个月内实现,那么投资的年收益率就是1 3 。 2%。巴菲特将以这个风险套购收益率与其他风险投资收益进行比较。
风险套购交易是具有亏损风险的。“我们愿意在某些交易中亏本—比如风险套汇—但是当一系列类型相似但彼此独立的事件有亏本预期概率时,我们是不情愿进入这类交易的。”巴
菲特坦言道:“我们希望进入那些概率计算准确性高的交易。”我们可以清楚地看出巴菲特对风险套购预测采用的主观概率法。在风险套购中没有频数分布,每笔交易都是不同的,每
次情况都要求不同的预测判断。既便如此,使用一些数学运算对风险套购交易的运作还是大有益处的。对风险套购的决策过程与普通股票投资的决策过程并无异处。为了说明普通股的决策过程,让我们来看看伯克谢尔·海舍威公司对两支经典普通股票的购入—韦尔斯·法戈( We l l s F a rgo) 和可口可乐。
投资于韦尔斯·法戈和可口可乐公司
1 9 9 0年1 0月,伯克谢尔·海舍威公司购买了5 0 0万股韦尔斯·法戈公司的股票,共投资2 。 8 7亿美元,每股的平均价格为5 7 。 8 8美元。这笔交易使伯克谢尔成为这家银行的最大股东,拥有已发行股票的1 0%。公司的这一举动是颇具争议的。在年初的时候,股价曾攀升