友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八八书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

经济数学模型化过程分析-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



如果根据实验结果所决定的系数值不是过大或过小,则可断定在这几个量之间可能存在相关性。 
最后强调几点: 
1。 量纲分析的基本方法没有固定的形式与结构; 
2。 变量和常数的正确选择常常依赖于建模者良好的直觉; 
3。 假说是十分必要的,不可太机械地利用量纲分析法; 
4。 P定理有双重含义:其一是存在一组无量纲量群,其二是如果主要变量或量纲数为m,导出变量数为n,则其必要的独立无量纲量群的数目为n…m; 
5。 量纲和单位之间有差别,我们要保持单位的相容性和量纲的一致性; 
6。 无量纲量群是组建模型的砖石。 
§2。2 数学模型的性质应用条件及评价准则  
数学模型是抽象模型中应用最为广泛的一类,它除具有一般模型的性能外,还有其独特的性质与功能,这就是数学模型日益渗透各个领域的原因。数学模型是借助抽象的数学语言来表述、分析和研究原型的数量的关系及量变规律的。由于数学本身的高度抽象性使数学模型不可避免地具有一定的抽象性,数学模型可以简化复杂的问题,提取关键的性质,使人们看到原型的本质,另一方面,数学模型有其具体的、确定的客观原型,它是原型的反映,故数学模型又有一定的现实性,这两重性使数学模型得以广泛应用于自然科学和社会科学。众所周知,数学是一个自封闭的、严谨的逻辑系统,因此受制约的数学模型必然具有严格的逻辑关系。如果数学模型是正确的,那么,由其推导出的结果也必然是正确的,这是其它模型所不能比拟的。 
数学模型与其它模型的不同之处还在于它有坚实的理论基础和有效的实现手段,理论基础是指数学理论的支持,从最基本的概念、定义或公理出发,经过严格推理建立起来的数学公理化理论系统,有许多可利用的定理、方法和结论。实现手段是指计算机的普及为数学模型的应用奠定的物质基础。如果说,运用数学模型是一种科学成功的标志,那么,这种科学的完善的方式就是运用数学模型。  
由于现实世界的任何事物都具有一定的数量关系和空间形式,因此,原则上说,数学模型可以研究任何原型。当然,数学模型的应用,也受一定条件的制约,有其应用的范围。Rosenblueth和Wiene (1945)曾对物理模型的实用性给出充分必要条件: 
1。 在不熟悉或不太熟悉的领域(原型〃空间〃)里的一个现象必须被(更)熟悉的领域(模型〃空间〃)里的一个现象所代替。 
2。 模型化实验必须在比原型实验更有利的条件(包括费用、时间等)下进行。 
这两个条件对于数学模型在经济中的应用也是有启发的。 
数学模型在经济中的应用是很广的,从应用的目的归纳大致包括四个方面:  
1。 观察和预测经济事物的机理变化和发展趋势; 
2。 规划和设计经济的现实与未来; 
3。 分析和控制经济的运动与规模; 
4。 研究和解释经济现象及规律。 
具体地说,数学模型是为了增加经济效益,降低经济消耗,合理地利用现有的资源等等。经济上需用模型的原因还在于人们往往不能或无法直接驾驭经济现实,所以借助数学模型是必然的。 
数学模型可以用于研究许多经济问题,但这并不意味数学模型可无条件地应用,应用数学模型的必要条件是: 
(1)经济原形(EP)可以映射到数学〃空间〃 
此条件包括:EP的有关概念定义明确;EP的经济假说具有一定的科学性;在数学〃空间〃里存在着与假说的数量关系、逻辑关系或混合关系〃同构〃的数学关系式;可以通过必要的推导或证明得出有意义的数学结构;所需要的EP信息必须能够收悉,并可处理和转化成为模型的参数。 
(2)数学模型在数学〃空间〃中可以研究 
此条件包括:研究数学模型的数学理论与方法是完备的;数学模型必须满足一定的数学性质(如可解性、稳定性、可计算性等等);结果必须能从数学上验证其正确与否。必要时,可以在计算机上实现。 
(3)数学模型及其结果可以映射回经济〃空间〃 
此条件包括:数学模型及其结果有一定的经济解释,可以验证经济假说或可以用经济实践检验。即数学模型及其结果可以用于指导经济工作。 
如果上述三个条件不能满足时,不宜使用数学模型。 
对经济原型的多种的希望使评价模型的准则也是多种多样的,人们总是希望在众多的〃可行的〃模型之中寻找一个最佳的模型,一般说来,合格的数学模型应当具有下列性质: 
(1)真实性或现实性:如果一个模型客观地反映了原型或子原型的量与量的关系,则称此模型具有真实性或现实性。 
(2)一般性或普遍性:如果模型的数学结构能够用于许多其它原型,则称此模型为异原模型,具有一般性或普遍性。 
(3)简洁性:如果模型能突出原型的主要矛盾和特征,而且忽略、舍弃次要的矛盾和特征,则称模型具有简洁性。 
(4)精确性:如果模型能够在一定程度上,比较准确地刻划原型数量方面的特征,则称模型具有精确性。 
(5)有效性:如果模型可以多方面地从不同的角度刻划经济原型或可以派生出较多的信息,而且具有多种功能,则称模型具有有效性。 
这些准则并非一定之规,使用时可以权衡利弊,有所取舍。 
模型化与模型是密切联系的,除模型化所得到的模型有上述性质外,模型化本身应满足以下的要求: 
1。 可行性:可行性包括:信息可采集、可转化、模型可构造、算法可实现、假说可验证、结果可解释等等。  
2。 经济性:模型化的过程中有一定的消耗,其中包括调查情况、收集资料、处理信息、构造模型、计算、分析、验证等等过程中的费用。模型化的收益与费用应当相称,经济性要求对模型化的规模和复杂程度加以控制。 
3。 实用性:经济数学模型化贵在有实用价值,这里包括模型化过程所需的时间短、经济实践中使用方便、可靠。 
值得指出,模型化的要求对模型的选取也有一定的参考价值。 
§2。3 数学模型的分类 
下面讨论一下数学模型的分类问题,这对于正确地构造模型和使用模型都是有益的。下面叙述几种分类方式。 
(一)按模型的数学性质分类 
按数学模型的性状大致可分为三类。其一为确定性模型,其原型具有相对地确定性或必然性,原型的各种关系相对稳定明确,模型的数学结构多为各种方程式,点集映射关系式和图式。其二为随机性模型,其原型具有随机性或偶然性,原型的某些关系是波动的和不肯定的。模型的数学背景理论是概率论、随机过程、数理统计、多元分析、和鞅论等等。其三是模糊性模型,其原型及其关系具有模糊性或不分明,其处理方式是Fuzzy子集理论、信度理论、证据理论和Fuzzy逻辑等等。 
按数学模型的各种变量、参量和函数结构的变动情况,可以把模型分为连续型模型,非连续性模型和离散性模型。连续性模型对于任何量或关系的微小摄动是相对稳定的;非连续性模型对某些量或关系的变化是间断的,有跳跃的;离散性模型则多指其变量是可列点列构成的。 
根据模型的参量可以分为固定参数(fixed…parameter)模型和自适应参数(adaptive…parameter)模型,前者在模型化过程中所涉及的参数只需给定一次,而后者则随着原型的变化而进行必要的调整,这时参数往往属于一个参数集合或空间。 
(二)按模型与时间的关系分类: 
亦可分为三类。首先,若模型的行为随时间而变化而且时间是独立的变量,则称为动态模型,其原型和时间关系密切(有时也称随阶段变化的模型为动态模型)。其次,若模型的行为不随时间而变化(时间可以是参量),则称之为稳态模型。其原型对时间的变化相对稳定。另外,若一非稳态的原型用一系列静态模型来表示,则称此系列模型为拟稳态模型。其原型是动态的,而这一系列模型中每一个模型是稳态的。如果细分,动态模型还可分瞬时模型(instantaneous)和记忆模型(memory)。前者在任意给定的瞬刻的行为只取决于此刻的环境或因素;而后者在任意给定的瞬刻的性态可能依赖此刻之前的一段时间的历史环境或因素。记忆模型还可以分为两种:其一,独立于此刻自身的行为而此刻之前的一段固定的有限时间称为定时距(time invariant)模型,其二,在现在任一瞬
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!