按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
(39)
其中 为第i个解释变量关于其余的解释变量作回归的决定系数,VIF(bi)称之为bi的方差扩大因子(variance…inflation factor:VIF)。根据经验通常当VIF(bi)》10( 》0。9)时,认为Xi和其余的解释变量之间存在着共线关系。
多重共线关系存在时,找到一个确切的处理方法是困难的,这里只介绍一些简单实用的方法。
1)增加样本的信息
例如对消费函数的分析,选择年度数据进行回归利用上面的判断尺度,发现了多重共线性,此时可以把年度数据换成季度数据再进行回归,通常会减少解释变量之间的相关关系。
2)对数据进行变换
例如对变量取对数后,再做回归通常会减少变量间的共线性,并增加参数估计的稳定性。也可以采用对模型中的变量一阶差分后,再进行回归的方法。
3)对模型不做任何调整
对模型进行估计后,发现参数估计值的符号大小都不和经济理论矛盾,其对应的t值在统计上显著,决定系数也很高,在这种情况下即使VIF很大,也没有必要对模型采取任何修正措施。对于多重共线性的处理对策,还存在其它一些方法,已超出本书的范围,故给予省略。由于不存在根本的解决方法,所以说即使是现在,多重共线性也是多元回归分析中使人感到最困难的问题之一。
应用实例
对于回归估计(19)式
C=…8。894+0。4839Y/CP+0。5064C(…1) … 9。683R … 295。4D1
我们计算上式中系数所对应的VIF得到
VIF(b2)=81。9; VIF(b3) =83。9; VIF(b4)=1。28
根据多重共线性判断尺度,可以认为解释变量之间存在着高度的共线关系。但是,注意到模型中各参数符号及大小和经济理论相一致,同时参数估计的t值在统计上有意义,R2很高。在这种情况下,不用过多考虑多重共线性的存在,我们对方程可以不做任何修改。
§7。3 回归分析的一些新发展
近年非平稳时间序列的估计方法、模型选择理论、长期均衡关系的分析方法都取得了飞速的发展。这些方法被应用于消费理论景气循环理论货币需求等领域,成为宏观经济学分析研究中不可缺少的手法。下面简单介绍一下主要的结果。
一、非平稳时间序列和假回归现象
考虑回归模型
Yt=jYt…1+ut (40)
式中ut满足模型(3)中假设的1)、2)、3)和6)。当j