按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
的风险溢价为1 0% …4%=6%,资产组合2的风险溢价为1 2% …4%=8%。
现在考虑一个任意的充分分散化的资产组合,即资产组合A,由于第一个因素的
贝塔值为
A1 =0 。 5,第二个因素的贝塔值为
A2 =0 。 7 5。多因素套利定价理论认为该资产
下载
第11章套利定价理论
273
组合的全部风险溢价必须等于作为对投资者的补偿的每一项系统风险的风险溢价的总
和。由于风险因素1要求相应的风险溢价为由因素1对资产组合产生的风险乘上资产
A1
组合中第一个因素产生的风险溢价E(r1)…rf。因此,资产组合A的风险溢价中用于对由
因素1产生的风险的补偿部分为A1'E(r1)…rf'=0 。 5 ( 1 0% …4%)=3%,因此由于风险因素2
产生的风险补偿部分为A2'E(r2)…rf'=0 。 7 5 ( 1 2% …4%)=6%。资产组合的总风险溢价为
3%+6%=9%。因此,资产组合的总收益应为1 3%,即
4% (无风险利率)
+ 3% (因素1的风险溢价)
+ 6% (因素2的风险溢价)
1 3% (总期望收益)
要了解为什么资产组合的期望收益为1 3%,我们来考虑如下的说明。假设资产组
合的期望收益为1 2%而非1 3%,这样的收益将会引发套利的机会。会构造一个具有和
资产组合A的值相同的资产组合,这个资产组合会要求其组合的第一个因素的权重为
0 。 5,第二个因素的权重为0 。 7 5,无风险资产的权重为…0 。 2 5。这使该资产组合与资产
组合A具有相同的因素:资产组合的第1个因素的权重为0 。 5,所以,第一个因素的
值为0 。 5,第2个因素的权重为0 。 7 5,所以,第二个因素的值为0 。 7 5。
尽管如此,对比其期望收益为1 2%的资产组合A,上述资产组合的期望收益为
(0 。 5×1 0 )+( 0 。 7 5×1 2 )…( 0 。 2 5×4 )=1 3%。对该资产组合作多头,同时对资产组合A作
空头,即可获得套利利润。每一美元的多头或空头头寸的总收益为一个正的、零净投
资头寸的一项无风险收益:
1 3%+0 。 5F1+0 。 7 5F2(因素资产组合中的多头头寸)
…( 1 2%+0 。 5F1+0。75 F2) ( 资产组合A中的空头头寸)
1%
把这个观点一般化,注意任何充分分散化的投资组合P所面临的风险因素由和
P1
P2给出。由资产组合第一个因素的权重为P 1、资产组合第二个因素的权重为P2组成
的有竞争的资产组合和值为1…P1 …P2的国库券的值等于资产组合P的值,其期望收
益为
E(rP)= P1E(r1)+ P2E(r2)+( 1…P1 …P2)rf
( 11 … 6 )
=rf+ P1'E(r1)…rf'+ P2'E(r2)…rf '
因此,如果套利机会被排除,贝塔值为P1和P2的充分分散化的资产组合一定有由方程
11 … 6 给出的期望收益。如果你对方程11 … 3 和11 … 6 作过比较后,你会发现方程11 … 6 只不
过是对单因素的证券市场曲线的一般化而已。
最后,把方程11 … 6 表示的多因素证券市场曲线扩展到单个资产的过程与扩展到单
因素套利定价理论上的过程完全相同。除非能被几乎每一证券单独地满足,否则方程
11 … 6 不能被每一充分分散化的投资组合满足。这就建立了一个多因素套利定价理论。
因此,任何具有1 =0 。 5和2 =0 。 7 5的股票的公平收益率将会是1 3%。这样方程11 … 6 代表
了一种存在多种风险来源经济下的多因素证券市场曲线。
概念检验
问题5:找出1 =0 。 2和2 =1 。 4的证券的公平收益率。
多因素套利定价理论有一个缺陷,它没有引导人们关注单因素资产组合的风险溢
价的决定问题。相比较,资本资产定价模型就具有市场的风险溢价由市场的方差和有
关投资者的风险厌恶程度决定的含义。与套利定价理论一样,资本资产定价模型也有
274 第三部分资本市场均衡
下载
多因素的一般形式,即瞬间的资本资产定价模型(I C A P M),这一模型对单因素资产组
合的风险溢价给予了很多关注。另外,最近的理论研究已经证明,尽管真实的单因素
或多因素资产组合难以识别,人们还是可以估计出期望收益…关系。本章结尾处所附的
参考文献中提到的赖斯曼(R e i s m a n)和尚肯(S h a n k e n)的论文讨论了这个问题。
小结
1。 当存在两种或两种以上的证券价格能使投资者构造一个能获得无风险利润的零
投资组合时,(无风险)套利机会就会出现。
2。 理性的投资者将不考虑风险厌恶程度,愿意对套利资产组合拥有尽可能大的头
寸。
3。 套利机会的存在和大量交易的结果将对证券价格产生压力。这种压力会持续存
在直至价格达到排除掉套利的水平。由于会引起巨额的交易,所以只需有一小部分投
资者留意到套利机会就可以启动这个过程。
4。 当证券的价格使无风险套利机会无法存在时,我们便称它们满足了无套利条件。
满足无套利条件的价格关系是重要的,因为我们希望它们在实际的市场中是有效的。
5。 当一个投资组合包含了大量不同的证券,并且每一种证券占的比例充分小时,
我们称这个投资组合为“充分分散化的”。一种证券的比例在充分分散化的投资组合
中是如此之小,以致在所有的实际运作中,该证券收益率的一次理性的变动对该资产
组合收益率的影响是可以忽略不计的。
6。 在单因素证券市场中,为了满足无套利条件,所有充分分散化的投资组合必须
满足证券市场曲线的期望收益…关系。
7。 如果所有充分分散化的投资组合满足期望收益…关系,那么除了一小部分以外,
所有的证券也必须满足该关系。
8。 无套利条件与在套利定价理论的简单形式下作出的单因素证券市场假定一起,
包含了与资本资产定价模型中相同的期望收益…关系,但它并不要求以C A P M中的严
格假定和(难以观测的)市场投资组合为基础。这个一般化的代价是A P T不能保证期
望收益…关系在所有时候对所有的证券都成立。
9。 多因素A P T将单因素模型一般化,使其适用于有多种风险来源的情况。
关键词
套利风险套利充分分散化的投资组合
零投资组合套利定价理论因素资产组合
参考文献
Stephen Ross 在以下两篇文章中发展了套利定价理论:
R o s s ; S 。 A 。“Return; Risk and Arbitrage。”I n Risk and Return in Finance; eds。 I。
Friend and J。 Bicksler。 Cambridge; Mass。: Ballinger; 1976。
R o s s ; S 。 A 。“Arbitrage Theory of Capital Asset Pricing。 ”Journal of Economic
T h e o ry; December 1976。
揭示了影响普通股股票收益率的因素的文章为:
B o w e r; D。 A。; R。 S。 Bower; and D。 E。 Logue。“Arbitrage Pricing and Utility Stock
R e t u r n s ;”Journal of Finance; Septermber 1994。
Chen; N。 F。; R。 Roll; and S。 Ross。“Economic Forces and Stock Market: Testing the
APT and Alternative Asset Pricing Theories。”Journal of Business; July 1986。
Sharpe; W。“Factors in New York Stock Exchange Security Returns; 1931…1979。”
Journal of Portfolio Management; Summer 1982。
揭示了检验期望收益…关系成为选择资产组合的必要步骤的文章为:
下载
第11章套利定价理论
275
Reisman; H。“Reference Variables; Factor Structure; and the Approximate Multibeta
R e p r e s e n t a t i o n 。”Journal of Finance; September 1992。
Shanken; J。“Multivariate Proxies and Asset Pricing Relations: Living with the Roll
C r i t i q u e 。”Journal of Financial Economics; March 1987。
习题
1。 假定影响美国经济的两个因素已被确定:工业生产增长率与通货膨胀率。目前,
预计工业生产增长率为3%,通货膨胀率为5%。某股票与工业生产增长率的贝塔值为1,
与通货膨胀率的贝塔值为0 。 5,股票的预期收益率为1 2%。如果工业生产真实增长率为
5%,而通胀率为8%,那么,修正后的股票的期望收益率为多少?
2。 假定F1与F2为两个独立的经济因素。无风险利率为6%,并且,所有的股票都