友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八八书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

投资学(第4版)-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



释变量来决定。对这个概念的明释只需以两变量的情形为例。一个房地产分析家对一
个分散性房地产资产组合的收益给出了一个回归方程:

R Et =a+b1R Et…1+b2N V Rt+et ( A … 2 6 ) 
式中被解释变量是t期的房地产资产组合R Et,模型说明该收益的被解释部分由两
个独立的部分组成。第一个是前期收益R Et…1,表示房地产发展势头的持续性。第二部
分为当期国家的空房率N V Rt。与简单的回归分析一样,a是截距,即为当解释变量为
零时R E的取值。回归系数(斜率)b1、b2代表各解释变量对R Et的边际影响。
确定系数的定义与前文一样。干扰项e的方差与资产组合总方差的比值即为1 。 0减
去该方程的确定系数。这里回归系数的估计原则也是使观测值相对于预测值偏差的平
方和达到最小。

A。4 假设检验
投资学理论的一个中心假设就是不能被分散掉的系统风险将由一个较高的预期收
益率来补偿。但是这个理论是否得到实证数据的支持呢?考虑表A … 3中股票的超额收
益。超额收益预期的估计(即样本均值)为8 。 5 7%。看上去这已是一个比较大的风险
补偿,但风险本身也是如此—样本标准差的估计为2 0 。 9%。这个正相关的关系是否


下载
附录A 定量计算的复习

767 

只是一时的运气而已?假设检验正是要解决这个问题。

假设检验的第一步必须要确定被检验的命题。它被称为原假设,记为H0。相对于

原假设,我们有一个备择假设命题记为H1,假设检验的目标就是要通过计算判断出错

的概率而确定是否要拒绝原假设、接受备择假设。

当对一个变量赋予某值时,我们称其为“特定”假设。认为股票溢价为零就是
“特定”假设的一个例子,但通常情况下假设是“一般”意义上的。“股票风险溢价不

是零”这个命题是一个完全一般的假设,而且它就是风险溢价是零这个特定假设的备

择假设。它认为风险溢价可以是任何值,但是,不是零。如果备择假设认为风险溢价

为正,尽管它并不是完全一般的,但它们也不是特定的。虽然有时我们不得不对两个

非特定假设进行检验(比如说,原假设认为风险溢价为零或负,备择假设认为风险溢

价为正),但这种非特定假设确实使确定出错概率的工作复杂化了。

那么,到底什么是可能的错误呢?我们可以把它分为两类,记为第I类错误和第

Ⅱ类错误。第I类错误就是指当原假设为真时我们拒绝原假设的事件,第I类错误出

现的概率被称为显著性水平。第Ⅱ类错误是指当原假设为假时我们接受原假设的事

件。

假定我们为接受H0确定了一个很宽松的标准,于是我们几乎可以确信我们肯定会

接受原假设。要达到这样,我们会使显著性水平趋于零(零是有利的)。如果我们肯

定不会拒绝原假设,那么当原假设为真时我们也肯定不会拒绝它。同时第Ⅱ类错误发

生的概率就会接近于1(1是不利的)。如果我们肯定会接受原假设,那么当原假设为

假时我们也会无条件地接受它。

如果我们为接受H0确定了一个很严格的条件,此时情况就完全相反了:因为我们

现在知道我们几乎肯定会拒绝它。这会使第Ⅱ类错误的发生概率变为零(有利情况): 

因为从不接受原假设,所以当原假设为假时我们肯定会拒绝它。但现在显著水平却变

成了1(不利情况)。如果我们经常拒绝原假设,那么就算当原假设为真时,我们也会

拒绝它。

两种错误的互相妥协决定了假设检验必须要有合适的显著水平。首先,它必须先

限制第I类错误的发生概率,然后根据已有的条件,理想的检验应该使第Ⅱ类错误发生

的概率减至最小。如果我们要避免第Ⅱ类错误(即当原假设为假时接受了它),那么当

你假设确定为假时,我们就必须拒绝它。避免的概率就是1减去第Ⅱ类错误的发生概率,

我们称其为检验强度。使第Ⅱ类错误发生概率最小化意味着检验强度的最大化。

为对“股票能获得风险补偿”这一命题作出检验,我们写出假设为:

H0:E(R)=0 即预期超额收益为零

H1:E(R)》0 即预期超额收益为正

H1是一个非特定的备择假设。当原假设和其相对的、完全一般的备择假设进行检

验时,我们称其为双尾检验,因为这时你可能会因为过大或过小的数值而拒绝原假

设。

当两个假设都是非特定假设时,由于计算第I类错误的发生概率复杂化了,因此

检验也变难了。通常情况下,至少会有一个假设是简单的(即特定的),于是我们就

设其为原假设,这样我们计算检验显著水平时就相对简单了。而在非特定假设为真的

前提下,检验强度的计算仍然是很复杂的;一般情况下我们不能把它解出来。

我们接下来会说明,如果我们把希望拒绝的假设E(R)= 0设为原假设,那么要接

受我们所希望看到的备择假设就相对不易。

在对E(R)= 0这一假设进行检验时,我们设定显著性水平为5%,这就是说,当

原假设为真时,我们拒绝原假设(即认为存在一个正的风险溢价)的概率为5%或更小。

因此,我们必须找到一个记为z 的边界值(或称为双边检验的边界值),其中


= 0 。 0 5。
该值将会产生两个区域:接受域与拒绝域。可以参看图A … 8。


768 第八部分附录

下载
图A…8 在原假设下样本的平均超额收益应在零周围分布

注:如果真实的平均超额收益为z ,我们的结论为原假设是错误的。

如果样本均值落在临界值的右边(即落在拒绝域),原假设即被拒绝;否则原假
设就被接受。在后一个情况下,正的样本均值就极有可能(也就是大于5%)是由样本
误差所致。如果样本均值大于临界值,我们就拒绝原假设,接受备择假设。由误差引
起该正的样本均值的概率会小于5%。

如果和该例一样备择假设是单边(单尾)的,那么接受区域就是负无穷到某区值,
而大于该正值的概率为5%。图A … 8中的临界值即为z 。当备择假设是双边的,5%的面
积就会平分于两个分布的极端,且各为2 。 5%。比较而言,双边检验要更严格一些(也
就是要拒绝原假设更难)。在单边检验中,我们可以根据原假设来预测样本均值偏差
的方向。这一事实将对备择假设更为有利。为了解决该问题,对于显著水平为5%的单
边检验,我们常用显著水平a/ 2=0 。 0 2 5的双边检验来代替。

假设检验需要对样本均值、样本方差等检验指标的概率分布作出必要的评价。为
此,我们需要对所分析随机变量的概率分布作出一定的假设。这样的前提假设是原假
设整体的一部分,而且常常是一个隐含的条件。

在本例中我们假设股票的超额收益服从正态分布。检验指标的分布是从指标的数
学定义和随机变量概率分布的假设中推出的,这里我们的检验指标是样本均值。
把所有观测值加总(T=6 8),然后乘以1 /T=1 / 6 8,所得的平均值即为样本均值。
每一个观测值都是一个随机变量,它们独立地服从同一个期望为


、标准差为
的概率
分布。所有观测值和的期望就是T个期望(都等于
)的和,除以T后即为个体均值的
估计。计算结果为8 。 5 7%,其等于实际期望值加上样本误差。在原假设成立的条件下,
实际期望值为零,于是整个8 。 5 7%都是样本误差。
为了计算样本均值的方差,我们假定所有观测值相互之间是独立的,或者说是不
相关的。因此和的方差即为方差的和,也就是个体方差乘以T。但是,由于我们对和


2

一般要进行乘以1 /T的处理,因此我们需要对方差和T 

除以T2。结果我们得到样本均
值的方差即为个体方差除以T。样本均值的标准差,一般称为标准误差,为:
1/2 1/2 

0。209 0 
(样本均值) = 。。 
è T12 
。 2。÷ 
。 
= 
。 
è 
。 
T12 
T 2。÷  = 0。025 3 (A…2 7)
。 

T 

68 

我们的检验指标具有2 。 5 3%的标准偏差,而且,似乎观测值的数目越大,期望估
计的标准误差就越小。但是,注意“方差”下降的比例较大,为T=6 8;而“标准误差”
下降的比例仅为


T = 8 。 2 5,
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!