按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
牵淼傥谒梗∕artius)早在1889年就发表过对大小恒常性进行的研究。这个问题的最终出现要归功于海林的心理学洞察能力,他在最近出版的论述视觉(192年)的著作中讨论了这个问题,并引进了“记忆色”(memory colour)这个名称。但是,该领域的经典著作当推卡兹的论著(1911年,1930年)。在著作得以刊布时,它的重要性几乎无法低估。我不准备详尽地讨论各种研究的历史,因为卡兹和盖尔布(Gelb)两人都已提供了非同寻常的研究结果。在用英语发表的著述中,麦克劳德(Macleod)的专著被推荐为是优秀的导论。
旧理论的困境
明度恒常性和颜色恒常性理论发现自己悬于两极之间。一方面,存在一些用若干因素对它进行解释的尝试,这些因素本身与恒常性无关,另一方面,结果本身(也就是恒常性)进入到解释之中。这两极在海林的讨论中被继承,对其中一极,他试图用适应性、瞳孔反应和对比(用海林的话说)来解释这些事实,对其中的另一极,体现在他的“记忆色”概念之中。然而,所有这些原理被卡兹和杨施证明为是非本质的。恒定性在海林的外部因素被排除后的条件下仍然保持着,从一般的意义上讲,记忆无法解释这种结果,因为实验不是用众所周知的物体进行的,否则的话,其颜色就会被观察者记住,而是用纸张或色轮来进行的,就被试所知,这些东西可能具有各种颜色。
关于白色恒常性的标准实验
例如,在房间的阴暗一角呈示一张淡灰色纸,把具有黑、白部分的色轮置于窗子附近。被试必须在色轮上找出一种黑白混合色,它看上去像阴暗角落里的那张纸一样呈灰色。在此条件下,正如卡兹首先发现的那样,达到完全相等是不可能的。在一个或者更多的方面,靠近窗子(也即接近光线)的色轮与阴暗中的纸张看来始终不同。然而,被试能以合理的方式来完成这项任务。在实际操作时,色轮上的黑白混合色尽管比阴暗角落里的纸张颜色要深一些,但仍能将更多的光传至观察者的眼中。这一点可用卡兹引入的方法来容易地加以证明。卡兹的方法如下:将具有两个洞的屏幕放在观察者和两种匹配的灰色之间,以便其中一个洞为来自纸张的光所填充,另一个洞为来自色轮的光所填充。如果在引进这种“减光屏”(reduction screen)以前,两样东西看上去呈同等的灰色,那么,通过减光屏以后,由色轮填充的那个洞将呈更淡的颜色。如果人们改变色轮上的混合色,以便两个洞看上去相等,然后移去减光屏,那么色轮便会几乎呈黑色,比灰色纸张的颜色要深得多。
恒常性的若干测量
通过这种方法,我们可以用多种方式来测量恒常性。让我们假设一下,位于房间阴暗角落中的淡灰色纸张相当于300度的白色和60度的黑色,我们把它的值称为r;在前面看上去与之相等(在没有减光屏的情况下)的色轮包含着200度白色和160度黑色,我们把它的值称为a;而“减光后等于”那张纸的色轮为20度白色和340度黑色,我们把它的值称为p。现在,我们可以说,r代表了作为远刺激的那张纸的特征,p代表了作为近刺激的特征,a代表了正常条件下(没有减光屏)色轮的结果。为了简便起见,我们略去黑色部分,便可计算两个商数,即卡兹的H商和Q商。在第一个商数中,我们用r值除以a值,在第二个商数中,我们用p值除以a值。于是,在我们的例子中,H=200/300=0.67,Q=200/20=10。布伦斯维克指出,这些值有些缺点。如果恒常性完整的话,H=1,但是“没有恒常性”就等于没有任何固定的H值;在我们的例子中,它将是20/300,可是在其他一些例子中,则是不同的值。恰恰相反,“没有恒常性’都有一个固定的Q=1,但是,完全恒常性的这个Q值依靠占优势的条件。正是由于这个原因,布伦斯维克引入了他的C值,C=100×(a-p)÷(r…p)(见边码p.226)。在我们的例子中,C=100×(200…20)÷(300…20)=100×180÷280=64。如果a=r,完全的恒常性,C=100;如果a=p,没有任何恒常性,C=O。尽管C值是有用的,但它却容易遭到异议,这是我们前面(见边码p.227)曾经提及过的。
我们的例子是许多实际实验的典型,一方面,它揭示了明度恒常性之间的另一种相似性,另一方面,则揭示了大小和形状恒常性。通常,恒常性是不完美的,用以比较的色轮的表面白色存在于标准色轮的反照率(albedo)和射入我们双眼的光线数量之间的某处。让我们回到术语上来,我们在第四章中曾对此作过介绍,我们把由一个表面反射的光称为i,照到表面上的光称为I,表面的反照率为L;那么,i=LI(见边码p.112)。如果当L1=L2时,处于不同的客观照明下的两个面将表现出完美的恒常性,如果当i1=i2时,它们便显示不出任何恒常性,因此,L1L2=I2/I1(因为i=L1I1=L2I2)。在普通的情形里,两种反照率的关系不是这两者中的任何一者,而是位于它们之间的某处;用索利斯的术语来说,回归再度是不完全的。
不同的组成成分:白色和明度
此外,正如我们已经提到过的那样,靠近窗子的具有一定白色的色轮与阴暗处具有同样表面白色的色轮看上去不会恰好相像。这种情况再次与其他两种恒常性相似。一个旋转的圆,即便看上去还是一个圆,但是与正面平行的圆不完全相似,因为它表现出像一个绕着一根轴转动的一个圆;同样的道理,具有一定尺寸的距离为a的一根拐杖看上去与具有同样尺寸但距离为b的拐杖不会恰好相像;这两根拐杖,尽管大小相等,但由于距离不等而看上去不同。那么,在有关白色方面表现相等的两种所色将在哪种特定的条件下表现出不同呢?用其他两种恒常性进行的类推表明,这样的一个方面必定会出现。卡兹在很久以前从事的实验证实了这个结论。事实上,存在着不止一个方面的差别,首先与索利斯的研究相一致的那个方面,我将称之为“明度”,而卡兹则称之为照度(illumination);其次,是卡兹称之为“清晰性”(Ausgepragtheit)的东西。我们暂不考虑后者,而仅仅限于明度和白色的讨论,这是一个与索利斯相一致的术语,我们把它用于这样一个方面,即或多或少属于一个物体的永久性特性,像“白色”、“淡灰”、“黑色”一样。为了一致起见,我们必须谈论“白色恒常性”,以代替“明度恒常性”那个传统的术语。
白色恒常性的不变因素
运用这个术语,我们可以从标准实验中得出另外一种结果。如果我们把色轮放在窗子附近,以便使之减光等于在房间背面的那张纸,也就是说,当我们处理与同样数量的光i相一致的r值和p值时,尽管它也与不同的L-I结合相一致,而色轮看上去要比纸张更少白色,但与此同时却明亮得多。这就暗示着这样一种可能性,一种白色和明度的结合(很可能是两者的产物),对于在一组明确的完整条件下的特定部位刺激来说,是一个不变因素。如果两个相等的邻近刺激产生了不同白色的两个面,那么,这两个面也将会有不同的明度,较白的那个面不太亮,较黑的那个面会更亮。
白色恒常性的理论尝试
那么,白色和明度是如何产生的呢?这是一种视觉理论必须回答的问题。为了找到一种可能的解答,让我们先从白色恒常性与大小恒常性和形状恒常性的比较开始。然而,由于后面两种恒常性同我意欲说明的论点很相似,因此,为了简明起见,我将限于大小恒常性方面。我们可以说:两个相等的邻近刺激(大小,光线强度)可以引起两种不同的知觉物体(大的一小的,白色-黑色)。
与大小和形状进行比较的白色特性
然而,使这种情况得以发生的条件在两个场内并不一致。大小场内的结果要求产生距离的差异,一般说来,这些差异无法通过大小之间的差异或梯度(gradient)而产生。正如视错觉所证明的那样,人们可以使两根相等的线看上去不同,办法是用其他的线将这两根相同的线包围起来,如图76所示,但是,当我们将此与白色场中的类比效果进行比较时,这种效果相对来说是较小的。 这是因为,在这里,确有可能把一个局部刺激的效果从黑色变为白色,只须改变视网膜上的强度梯度便可