按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
髁苏庖坏恪N颐窃谇懊妫呗雙.227)讨论的“超恒常性”(super…constancy)情况完全适合于我们的理论;这些超恒常情况是在特定条件下从我们的理论中产生出来的,而且我在其他地方找不到关于它们的任何解释。艾斯勒对这些情况的讨论(尽管我在这里省略了),也完全符合我们的解释。
若把我们的解释上升至一种假设,尚有许多工作要做。不过,真正的解释必须符合与我的假设相似的思路。这是因为,对实际形状的“了解”并未说明该效应,这是索利斯(1931年a)已经通过特定的实验所表明了的。如果我向这位作者进行正确的解释,那么,他也会相信真正的理论一定是此处提出的这种理论。索利斯拒绝“累积说或整合说”(summative or integrative theory),并假设了一种“反应理论”(respouse theory)。根据这种理论,“用双眼观察一个倾斜的圆所见到的椭圆,与用单眼观察并消除距离线索后所见到的椭圆一样,属于同样顺序的知觉事实”(1931年a,p.26)。
恒常性和空间组织
在我们的理论中,由某种视网膜意像产生的行为形状有赖于空间组织,该空间组织是视网膜意像引起的。因此,知觉到的图形方向越“合适”,恒常性便越强,也就是说,图形越是接近实际的方向。决定方向的所有因素一定会同时影响知觉到的形状。这一结论对我们的理论来说不一定是特定的结论,但它这种或那种形式包括在形状恒常性的任何一种理论之中,因为该结论已为事实所充分证明。艾斯勒十分系统地研究了一些条件,它们按照一般的空间组织而变化,并在这些条件和形状恒常性之间找到了清晰的相关性。人们发现,在这些条件中间,双目视差,也即视网膜像差(retinal disparity),具有特别的重要性。而中央区域图形的良好清晰度,以及周围区域的良好清晰度,几乎不是很少相关的。此外,他还发现,不同的深度标准可以彼此取代,而且基本上不会改变其结果。从图解角度上讲,这意味着:在a、b、c三种标准中,单单a可能与a和b的结合同样有效,但是,b和c并不比a和b的结合或者a和c的结合更差。该结果的理论意义只有通过深度因素本身的讨论才能获得发展,这个任务我们将在完成恒常性问题的讨论以后再予以处理。
态度的影响
如果被试的态度指向“投射”(projectinon)而不是指向实际形状的话,恒常性会受到极大的影响,这是由克林费格(Klimp-finger)于1933年从事的形状研究所表明了的,霍兰迪(Holaday)关于大小恒常性的研究也表明了这一点。在这两种情形里,所得结果都不是恒常性的完全丧失;在“分析”的态度下,所选择的正面平行图形看上去与旋转的图形相等,尽管比之在正常态度下更加接近于后者的视网膜意像,然而,就方向上更相似于旋转图形的“实际”形状而言,正面平行图形仍然与旋转图形的视网膜意像不同;倘若在细节上予以必要的修正,对大小来说也同样正确。然而,用上述方式进行正常观察,比之分析态度和正常的外部条件,恒常性较低,所以改变外部条件是有可能的。
大小恒常性
我们关于大小恒常性还想补充几句,尽管我们在第三章(见边码pp.88-90)已经讨论过这个问题。布伦斯维克(Brunswik)的另一名学生霍兰迪已经为此做了艾斯勒和克林费格在形状恒常性方面做过的工作,他调查了影响这种恒常性的一些外部条件和内部条件。所取得的结果与其他两位作者取得的结果很相似,这是我们在关于分析的态度这一内部条件方面已经提到过的。至于外部条件方面,恒常性再次随空间组织而变化,但是像差对大小的影响比对形状的影响更弱,艾斯勒和霍兰迪已经解释过这个事实,其例证是深度组织对形状恒常性比对大小恒常性更敏锐。
这一例证的不变因素
艾斯勒和霍兰迪所得结果之间的相似性表明了一种原因的相似性。对于大小恒常性来说,如同对于形状恒常性一样,某种结果就特定刺激而言将是不变因素,而且,这种结果将是大小和距离的某种结合。我们已经提及(见边码p.229),霍兰迪的有些结果似乎与这样一种假设相抵触,但是,我也曾经指出,为什么我不能把这些矛盾的结果视作决定性的。这种结合形式必须在今后的实验中设计出来,它将证明这种结合形式有赖于方向,即物体从观察者那里撤回的方向。我们在第三章(见边码p.94)讨论天顶…地平线幻觉时已有涉及。
对大小而言,没有一组独特的条件
然而,在一个重要的方面,知觉的大小理论肯定与知觉的形状理论有所不同:关于后者,我们已经发现了一个有关正常方向的独特例子,也就是正面平行面。可是,对于大小来说,就不存在任何这类独特的例证,实际上没有一种“正常的”距离可以与正常的方向相比较。一方面,正常的距离对不同物体来说是不同的,例如,对一张印刷纸、一个人、一幢房子、一座山等等,另一方面,这样一种正常距离的范围是相当广泛的,而且不是一个很好界定了的点。但是,在这领域内,其他某种东西起着类似的作用,看来也是有可能的。劳恩斯泰因(Lanenstein)于1934年作了一项观察,按照这个观察,恒常性并非距离的一种简单函数,正如迄今为止人们所假设的那样,而是适用于明确的统一范围,在两种这样的范围之内,它们与观察者处于不同的距离,恒常性差不多同样地良好,尽管相互之间进行比较,较近的范围具有较大程度的恒常性。从这一范围概念出发,正如我们将在后面看到的那样,会在颜色恒常性领域内找到其对应物「卡多斯(Kardos)」,他的结论是,“实际的”(正常的)行为大小可能会出现在把观察者的行为“自我”也包括进去的范围之内。
知觉大小的可能理论
知觉的大小恒常性理论可能导源于知觉空间的理论,这在第四章(见边码 p.119)已有所表明。如果清晰的空间倾向于变得尽可能大时,它就需要力量以便使一个物体在附近出现。该理论是我在与苛勒(kohler)的一次讨论中了解到的,它提示了以下观点:让物体靠近所耗费的能量越多,使之保持大的可用能量便越少。该证明足以补充以下说法,即邻近性不一定是决定物体大小的唯一因素,还有其他一些因素,它们可能是“清楚”的清晰度,即可视性(surveyabilyty)。视物显小症(micropsia)的事实看来支持了这样一种概括的理论,对于大小理论来说重要的一些事实早就为杨施(Jaensch,1909年)所认识,他在这个问题上首次发表的见解差不多具有划时代的意义。
H.弗兰克的实验
苛勒理论的一种特殊形式已由H.弗兰克(H.Frank)在其实验室中加以测试(1930年)。在关于大小恒常性的普通实验中,两个用来比较的物体交替地被注视,也就是说,把一个在远处被注视的物体与一个在近处被注视的物体进行比较。在一定的范围内,大小恒常性是完善的,因此,同一个地理上的物体在1-2米距离内看上去是相等的,尽管在视网膜意像上,远处物体的面积只有近处物体面积的四分之一。但是,在向近处物体注视改为向远处物体注视时,“调节和聚合的肌肉紧张度下降。因此,如果人们认为,视野会为了‘近刺激’的目的而不得不分离它的一些能量,而这种能量的丧失导致被注视物体相对缩小的话……那么,伴随着‘远刺激’而引起眼部肌肉紧张程度的减少,也就是说,由视野引起能量的较小丧失,将会导致被注视物体的相应扩大,从而或多或少补偿了(中心区域)视网膜意像的缩小”(弗兰克,p.136)。由海林(Hering)等人所作的某些观察看来也证实了这种观点。不过,弗兰克进行了一些量化实验,以便使它服从于一种刻板的检测。把一个被直接注视的正方形连续地与一个在同样客观距离上被观察的正方形进行比较,而这种注视可以近些也可以远些。结果,与海林的观察颇为一致,在一个固定距离内的正方形,当它被注视时,比起当它位于注视点后面时,该正方形就显得大一些,但是比起它位于注视点前面时要更小一些。此外,非注视的正方形的大小随着距离观察者注视点的距离而变化,或多或少像调节和聚合发生的情况