按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
接近性
接近性的因素是很容易证明的。在图41和图42的图形中,圆点和线条形成对子,在这些对子中,接近的圆点和线条自 发地联合起来。确实,人们也可以任意地看其他的对子,尤其是当距离的差别不是太大时。但是,在同一时间内看到的对子不可能超过一个或二个,这样的对子越多,同时看到远距离的对子就越困难,而其他一些对子则随着对子间增加而获得了稳定性。 此外,接近性是一个相对的术语,这是明白无误的;同样的距离,在一个图样中可能是对子内的距离,而在另一个图样中则可能成为对子间的距离。当然,这一定律也是有限制的;当距离太大时,便不会发生任何统一,对子内距离越小,对子便越稳定。
接近性和等同性
然而,若要系统地阐述接近性定律也不是一件易事。迄今为止,我们只不过证明了,当场包含了若干相等部分时,相等部分中具有更大接近性的一些部分将组织成较高的单位(对子)。这种组织必须被视作与一个同质点的组织同样真实的组织。正如我们用实际的力量对后者作出解释一样(这些实际的力量将一致的区域结合在一起,并将该区域与场的其余部分相分离),我们必须把我们的组群形式视作是由于组群成员之间吸引的实际力量。这不只是一种假设,也不只是一个名称,因为这些力具有可以证明的效果,正如我们以后将会看到的那样,当我们研究有机体对场内的这些力进行反应时,我们可以看到这些力具有可以证明的效果。 然而,我们的接近性定律迄今为止有赖于接近中的一些部分的等同性(equalty)。即便具有一定的限度,它仍是十分重要的。但是,我们将设法了解,我们能在超越这一限度多大的程度上对它进行概括。在图43a中,该原理仍对归并(grouping)起决定作用。我们看到的归并对子由一条蓝线和一条红线组成,而不是由两条蓝线和两条红线分别组成。
但是,在图43b中,该结果值得怀疑。因为图43b的图样是更加模棱两可的。我们可以看到接近部分的归并和相等部分的归并。前者(接近部分的归并)看来略占优势,至少,我可以在这些归并中相当容易地看到所有的线,可是在后者(相等部分的归并)中,我倾向于既丢掉了直线,又丢掉了曲线。因此,尽管接近性看来仍支配着等同性,但是,这种优势已经消失,这应归功于我们所引入的一种新差别,也就是说,形状对颜色。我们发现,形状的等同比起颜色的等同来是一个更强的组织因素。在图43c中,两种因素结合起来了,现在,等同性显然超过了接近性,那些对子由相等的线形成,而不是由接近的线形成。在这三种图形中,相对距离犹如1-3。对这些因素的相对强度进行测量是可能的,正如威特海默已经揭示的那样,通过改变这些相对的距离来对这些因素的相对强度进行测量是可能的。如果我们使它们都相等,我们便把等同因素孤立起来了。这种情况在图43的d和e里面都做到了,在这两幅图中,由于形状的差别,e比d更加稳定和更少模棱两可,而d仅仅在颜色上有差别。
这一讨论似乎要求对接近性定律和等同性定律作如下的系统阐述:场内的两个部分将按照它们的接近程度和等同程度彼此吸引。如果这种说法正确的话,如果接近性和等同性这两个因素中任何一个因素的值为零的话,那就不会发生吸引,从而也不会发生归并。对于接近性来说,这是容易证明的,因为接近的程度,或者它的对立面,也即距离,可以容易地予以量的改变。我们只要将两个场的部分彼此完全分离,吸引之力将会消失,至少就一切实践的目的而言,吸引之力将消失。可是,由于等同程度还不可能被测量,因此也不可能从实验角度去确定当两个场部分完全不同时是否会发生任何归并。然而,我们可以对后一种说法加以限定。分离的部分不会与背景归并在一起;所有的归并在背景上的图像之间发生。因此,在那个意义上说,也就是作为图像来说,如果归并出现,那么就一定存在等同性。这就为等同性这个术语提供了十分重要的判据。至少,迄今为止,等同性与接近性具有同样的立足点;在这个意义上说,没有等同性便没有归并,正像没有接近性便没有归并一样。
这一论争的目的在于声称,单凭接近性,或者说单凭任何一类事件之间的接近性,并不产生组织之力,力的产生和力的强度有赖于接近状态中的那些过程。上述句子的后一部分已经由我们的上述例证所证明:处于恒常接近条件下的组织有赖于等同性程度,有赖于组织中过程之间的差别。上述句子的前一部分(即单凭接近性不是充足条件)也是正确的,它可以导源于图形一背景(figure-ground)的清晰度。在下一章中,我们将用较大篇幅来讨论图形一背景的清晰度。如果单是接近性成为组织原因的话,我们便与我们在物理学中了解的组织知识发生矛盾。“无论何处,只要A和B在物理学中彼此相关,人们便会发现,其效果有赖于A和B彼此相关中的特性”(苛勒,1929年,p。180)。于是,两个物体按照它们的质量而相互吸引,而且,它们越是接近,则吸引力越大,但是,两个物体也可能在相互之间并不施加任何电力(electric forces)的情况下彼此接近,如果这两个物体在电学上是中性的话。因此,在我们的心物组织中,当两个异质部分由于接近性而形成一个对子时,它们一定在某个方面是等同的,从而能够彼此产生影响。
(实心=红色,影线=蓝色,参见边码p.165注10)
实际上,我们可以单单通过接近性而将任何一类部分结合在一个组群中,假定这些部分完全可以从其他部分中分离出来的话。我们的图44提供了一个例子。但是,这并不意味着,单凭接近性能将任何东西都集合在一起,而是这些部分具有作为部分的共同特性,这些共同特性解释了这些部分相互作用的原因。
让我们对接近性和等同性作最后的说明。在图43(a-e)中,可供选择的归并和使形状得以产生的接近性等同,而从任何一种归并中产生的整个图形又是有规则的和一致的。但是,当结果不是有规则的或简单的图形时,接近性和等同性又将如何运作,这个问题尚未进行过研究。像在许多其他方面一样,我们在这一方面的知识仍然不够完整。
闭合
让我们现在转向闭合(closure)。在前面的讨论中(见边码P.151),我们曾主张,闭合区比不闭合区更加稳定,从而也更容易产生。我们将通过与接近性因素和良好连续性因素相对的闭合组织来证明这一点。 图45引自苛勒(1929年)的研究,它是关于闭合组织不考虑接近性因素的一个例证。从占支配的角度而言,并不是那些最接近的垂直线形成对子,而是那些闭合空间形成对子。尽管在图45中,闭合空间的内部距离(两根垂线之间的距离)为两根接近垂线之间距离的三倍,此外,两根短斜线的端间距离与两根接近垂线之间的距离正好相等。而且.在图46里面,也包含图46a的A、 B、C、D四个部分。但是,在图a中,按照良好连续因素的原则,B是A的连续,D是C的连续,可是在图b中,两个闭合区都表现为次级整体(subwholes),以致于A不再由B连续,C也不再由D连续。闭合作用并不总是战胜良好的连续,这是由威特海默论文中的若干图像所说明的。关于这篇论文,我在这里省略了,不过,我想证明闭合原则的效用。
我从点子图中选取了一个例子,用以说明并非所有的闭合作用都同样地好,与此同时也证明了单位形成和形状是组织的两个不同方面。在图47所呈现的两个图形中, b是一个熟悉的图形,使人回忆起北斗七星的犁状星座,而前者看上去则完全是新的。这两个图形由赫兹(Hertz)以不同方式联结了七个点而构成。其中图b的联结方式是我们在天空中常见的星座,而图a的联结方式,尽管在某种意义上说是较为简单的,因为它产生了单一的闭合图形,然而没有人见过这种图形,原因是这个闭合图形十分不规则,而图b的闭合部分却十分简单。
其他一些异质刺激
我们将通过考虑一些不太人为的刺激条件来结束这场讨论。通常,既非完全同质的分布引发整个刺激模式,又非不同的同质区域构成了整个刺激模式。