按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
,决定感官而不为感官所决定,即是说空间和时间的直观是先验的,从而也是根本不容感官的迷误入侵的;只有学得了这些,然后我们才能理解欧几里德在数学上使用的逻辑方法只是多余的谨慎,有如健全的腿上再加拐杖似的;有如行人在夜间把白色的干路当作水,唯恐踏入水中,宁可在路边高一步,低一步,走过一段又一段,还自以为得计没有碰到这原不存在的水。直到现在,我们才能有确实把握说:在我们直接观察一个几何图形时,那必然是显现于我们之前的,既不来自划在纸上不很精确的图形,也不来自我们边看边设想的抽象概念。而是来自我们意识中一切先验的认识的形式。这形式,无论在什么地方,都是根据律;在这里、作为直观的形式,也即是空间,则是存在的根据律。存在根据律的自明性、妥当性,和认识根据律的自明性、妥当性,亦即是和逻辑的真确性,是同样大小,同样直接的。所以我们不用,也不可为了单独相信后者,就离开数学自有的领域而在二个和数学不相干的领域,概念的领域里求取数学的证明。如果我们坚守数学自有的园地,我们便可获得一个'很'大的优点,就是在数学中所知道的“有这么回事”与其“何以如此”现在成为一件事了,而不再是欧几里德把它完全割裂为两事,只许知道前者,不许知道后者的办法了。其实,亚里士多德在《后分析篇》第一篇第27节中说得非常中肯:“同时告诉我们‘有一事物’及其‘何以如此’的知识比分别讲述事物之有及其所以然的知识要准确些,优越些。”在物理学中我们要得到满足,只有事物之如此与其何以如此两种知识统一起来,才有可能。单是知道托瑞切利管中的水银柱高过二十八英寸,如果不同时知道其所以如此是由于空气的压力,那是一种不够的知识。然则在数学园里的隐秘属性,譬如'知道' 圆形中两两交叉的弦的线段总是构成同样的矩形,就能满足我们吗?这里的“是如此”,欧几里德固然已在第三卷第三十五条定理中证明了,但是“何以如此”仍然没有交代。同样,毕达戈拉斯定理也告诉了我们直角三角形的一种隐秘属性。欧几里德那矫揉造作,挖空心思的证明,一到“何以如此”就避不见面了,而下列简单的,已经熟知的图形,一眼看去,就比他那个证明强得多。这图形让我们有透入这事的理解,使我们从内心坚定地理解'上述'那种必然性,理解'上述' 那种属住对于直角的依赖性:在勾股两边不相等的时候,要解决问题当然也可以从这种直观的理解着手。根本可说任何可能的几何学真理都应该这样,单是因为每次发现这样的真理都是从这种直观的必然性出发的,而证明却是事后想出来追加上去的,就应该这样。所以人们只须分析一下在当初找出一条几何学真理时的思维过程,就能直观地认识其必然性。我希望数学的讲授根本就用分析的方法,而不采取欧几里德使用的综合方法。对于复杂的数学真理,分析方法诚然有很大的困难,然而并不是不可克服的困难。在德国已经一再有人发起改变数学讲授的方式并主张多采取这种分析的途径。在这方面表现得最坚定的是诺德豪森文科中学的数学、物理教员戈萨克先生,因为他在一八五二年四月六日学校考试的提纲后面,还附加了一个详细的说明,'内容是'如何试用我的原则来处理几何学。
为了改善数学的方法,首先就要求人们放弃这样一种成见,这种成见以为经过证明的真理有什么地方胜似直观认识的真理,或是以为逻辑的,以矛盾律为根据的真理胜似形而上的真理;'其实'后者是直接自明的,而空间的纯直观也是属于'自明的'真理之内的。
最真确而又怎么也不能加以说明的便是根据律的内容。因为根据律,在其各别的形态中,原意味着我们所有一切表象和“认识”的普遍形式。一切说明都是还原到根据律,都是在个别情况中指出表象与表象之间的关联,这些关联根本就是由根据律表述出来的。因此,根据律才是一切说明'所根据'的原则,从而它自身就不能再加以说明,也不需要一个说听。每一说明都要先假定它,只有通过它才具有意义。但是在它的各个形态之间,并无优劣之分;作为存在的根据律、或是变易的根据律、或是行为的根据律、或是认识的根据律,它都是同等的真确,同样的不可证明。在它的各个形态中,根据和后果的关系都是一个必然的关系;这个关系根本就是“必然性”这概念的最高源泉,也就是这个概念的唯一意义。如果已经有了根据,那么,除了后果的必然性之外,就再没有什么必然性了,并且也没有一种根据不导致后果的必然性。所以,从前提中已有的认识根据引出在结论中道出来的后果,和空间上的存在根据决定其空间上的后果是同样的确实可靠。如果我直观地认识了这空间上的存在根据及其后果的关系,那么,这种真确性和逻辑的真确性是同等的。而每一个几何学定理就是这种关系的表出,和十二公理中任何一条都是同样真确的。这种表出是一个形而上的真理,作为这样的真理,它和矛盾津自身是同样直接真确的。矛盾律是一个超逻辑的真理,也是一切逻辑求证的普遍基础。谁要是否认几何定理表出的空间关系在直观中所昭示的必然性,他就可以以同等权利否认那些公理,否认从前提中推论出来的结果,甚至可以否认矛盾津自身;因为所有这些都同样是不得而证明的,直接自明的,可以先验认识的一些关系。所以,空间的关系本有可以直接认识到的必然性,然而人们都要通过一条逻辑的证明从矛盾律来引伸这必然性;这就不是别的,而是好象自有土地的领主却要另外一位领主把这土地佃给他似的。可是这就是欧几里德所做的。他只是被迫无可奈何才让他那些公理立足于直接的证据之上,在此以后所有的几何学真理都要经过逻辑的证明,即是说都要以那些公理为前提而从公理和定理的符合中作出的假定,或前面已有的定理来证明,或是从定理的反面对于假定的矛盾,对于公理的矛盾,对于前面定理的矛盾,甚至是对于定理自身的矛盾来证明。不过公理本身也不比其他任何几何定理有更多的直接证据,只是由于内容贫乏一些,所以更简单一此罢了。
当人们审问一个犯人时,人们总是把他的口供记录下来,以便从口供的前后一致来判断口供的真实性。但是这不过是一个不得已的措施;如果人们能够直接研究每一句口供的真实性,那就不会这样做了,因为这个犯人还可从头至尾自圆其说地撤谎。可是'单凭口供的前后一致,' 这就是欧几里德按以研究空间的方法。他虽是从'下面' 这个正确的前提出发的,即是说大自然既无处不是一致的,那么在它的基本形式中,在空间中也必须是一致的;并且由于空间的各部分既在互为根据与后果的关系中,所以没有一个空间的规定能够在它原来的样儿之外又是另外一个样儿而不和其他一切的规定相矛盾。但是这是一条繁重的,难以令人满意的弯路,这条弯路以为间接的认识比同样真确的直接认识更为可取;它又割裂了“有此事物”与“何以有此事物”的认识而大不利于科学。最后它还完全遮断了初学者对于空间规律的理解,甚至于不使他习惯于真正的探求根据,探求事物的内部联系;却反而诱导他以“事物是如此”这种历史往的知识为己足。人们经常称道这种方法可以锻炼辨别力,其实不过是学生们为了记住所有那些资料要在记忆上多费劲而已,'因为' 这些资料间的一致性是要加以比较的。
此外还有值得注意的是这种求证方法只用在几何学上而不用在算术上。在算术中,人们倒真是只用直观来阐明真理,而直观在这里就是单纯的计数。因为数的直观只在时间中,所以不能和几何学一样用感性的图形来表出,这就去掉了一个顾虑,'不必顾虑' 直观只是经验的,从而难免为假象所惑了。原来能够把逻辑的求证方式带进几何学里来的也只是这一顾虑。因为时间只有一进向,所以计数是唯一的算术运算,。其他一切运算都要还原到这一运算。这计数并不是别的,而是先验的直观。人