按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
概率这三者的概念。
如果我们将具体描述用做预测的工具,那么不加批判地用貌似合理的判断来替代概率就会严重影响我们的判断结果。请思考下列一组问题中的两个描述,并对其可能性作出评估。
明年北美某地将有一次洪灾,1000多人将被淹死。
明年加利福尼亚某时将有一次地震,此次地震将导致洪水,1000多人将被淹死。
加利福尼亚地震的情节要比北美洪灾的情节更合乎情理,尽管加利福尼亚地震的概率非常小。不出所料,人们对更详细、更丰富的描述作出的概率判断更高,这一点有违逻辑。预言家总会给其客户设下陷阱:对情节加以详述会使其更可信,却更不可能成为现实。
为了体会“貌似合理”的作用,请看下面的问题:
下面两个论述哪个可能性更大?
马克长有头发。
马克长有金色的头发。
以及下面两个论述哪个可能性更大?
简是位老师。
简是位老师,她走路去上班。
这两个问题与琳达问题一样,有相同的逻辑结构,但它们却没有引起谬误,因为更详细的结果只是更详细而已,不会更让人信服,或更有连贯性,或更讲得通。对貌似合理和连贯性的评估不会产生概率问题的答案。在与之相矛盾的直觉缺位时,逻辑就会起作用。
少即是多的逻辑悖论
芝加哥大学的奚恺元(Christopher Hsee)让人们在当地一家商店清仓大甩卖时为几套餐具标价,当地餐具的价位一般在30~60美元。他将受试者分成三个小组,其中一个组看了下面的标价,奚恺元将这组标价标注为“综合评估”,因为受试者可以对两套餐具进行对比。另外两组只看了其中一组的标价,此谓“单一评估”。综合评估是组内实验,而单个评估则是组间评估。
假设A、B两套餐具质量相当,那么哪套更值钱呢?这个问题很简单。你可以看到A套包括B套所有的餐具,另外还多出7件完好无损的餐具,所以A套“必然”更值钱。的确,综合评估组的受试者宁愿多花点钱买A套餐具也不愿买B套,A套标价为32美元,B家标价为30美元。
在单一评估组中则出现了完全相反的结果,其中B套标价(33美元)比A套(23美元)高很多,我们都知道为何会出现这一结果。用具组合(包括餐具)通过标准和原型展示出来,因为没有人想买破损的餐具,于是你立即感觉到A套组合的平均价值比B套组合的平均价值低。如果以平均价值引导估测,人们认为B套更值钱也就不足为奇了。奚恺元将这样的结果模式称为“少即是多”。从A套中拿走16件餐具(有7件是完好无损的),它的价值就会提升了。
实验经济学家约翰·李斯特(John List)对奚恺元的发现进行了复制,他在真正的市场上拍卖两套相同的高价值棒球卡片,每套各为10张,但其中一套附赠3张普通价值的卡片。就像餐具的例子一样,在综合评估中,数量多的组合会比少的更有价值,但在单一评估中则正好相反。从经济理论的角度来看,一套餐具或一套棒球卡片的经济价值是一种总体变量,给任何一套加上一个有价值的物件只能提升它的价值。如果是这样,这个结果就有些令人烦恼了。
琳达问题和餐具问题的结构完全相同。概率就像是经济价值,是一种总体变量,我可以通过以下这个例子加以说明:
概率(琳达是个出纳)等于概率(琳达是个女权主义出纳)加概率(琳达是个非女权主义出纳)
这就是为什么琳达问题的单一评估产生了一种“少即是多”的模式,这一点与奚恺元的餐具实验一样。系统1会取价值的平均值而不是累加值,因此,当我们将非女权主义的银行出纳从银行出纳的大集合中移除后,主观(判定)的概率就会加大。然而,变量的总体性对概率判断的影响要小于其对金钱的影响。因此,综合评估只是消除了奚恺元的实验中出现的错误,却无法消除琳达实验中出现的错误。
琳达不是唯一一个在综合评估中得以存在的合取谬误,我们在其他许多判断中也发现了有悖逻辑的类似情况,其中一项研究的受试者被要求从高到低排列下一届温布尔登网球赛的4个可能结果,比约·伯格(Bj·rn Borg)是研究进行当日的主要网球比赛运动员。以下即为结果:
A。伯格会赢得比赛。
B。伯格会输掉首局。
C。伯格会输掉首局,但会赢得比赛。
D。伯格会赢得首局,但会输掉比赛。
上述结果中B和C两项比较重要。B囊括的内容更多,其概率“一定”比自身所包含的一个事件发生的概率大。受试者给出的答案与逻辑相悖,却顺应了典型性和貌似合理性,72%的人认为B选项比C选项的可能性更小,又一个通过直接比较得出“少即是多”的例子。这一次受试者选出的可能性最大的描述无疑貌似更合理,更符合当今世界一流网球运动员身上所具有的所有公认的特质。
合取谬误是因为对概率的误解,为阻止可能会出现的异议,我们设计了一个需要作出概率判断的问题,但在这个问题中,事件不是用文字来描述的,而且“概率”这个词一次也没有出现过。我们告诉受试者有一个标准的六面骰子,其中四面是绿色的,两面是红色的,此骰子可被投掷20次。我们给他们看了三组预设的结果,都是绿色(G)和红色(R)的任意排列,并让他们选一组。如果他们选择的那组正好出现,他们会(假想)得到25美元。这三组是:
1。RGRRR
2。GRGRRR
3。GRRRRR
因为这个骰子绿色面的数量是红色的2倍,第一组就很不具代表性,就像琳达是个银行出纳这一选项一样。第二组包括6次投掷结果,与预期投骰子结果更为符合,因为它有两个G。但是这个结果在设计时只是在第一种序列的开头加了个G,所以它比第一组更不可能,只是相当于“琳达是个积极参与女权主义的银行出纳”的非言语表达。与琳达的研究一样,典型性主导着上例的结果。几乎三分之二的受试者更愿意在第二组上下注,而不愿赌第一组。然而,当人们看到支持两种选择的理由时,大多数人发现正确的理由(偏向第一组的)更可信。
下一个问题是个突破,因为我们终于找到了可以降低合取谬误的条件。两组受试者看到同一个问题,但其变量稍显不同:
不列颠的哥伦比亚省针对成年男子样本作了一个健康调查,这些男子年龄不同,职业也不同。请对以下价值给出最佳评估:
在被调查的男子中,有几成人有过一次甚至多次心脏病发作的经历?
在被调查的男子中,有几成人既超过了55岁又有过一次甚至多次心脏病发作的经历?
不列颠的哥伦比亚省对一个由100名成年男性构成的样本进行了调查,这些男性年龄不同,职业也不同。请对以下价值给出最佳评估:
100名受试者中有多少位有过一次甚至多次心脏病发作的经历?
100名受试者中有多少超过55岁又有过一次甚至多次心脏病发作的经历?
看左栏问题的小组的错误率为65%,而看右栏的小组的错误率仅为25%。
为什么“在100名受试者中有多少……”的问题比“有几成人……”更容易回答?有一个可能的解释是“100名”这个参考值给大脑一种空间上的暗示。假使有很多人按照指示把自己归到一间屋子里的不同小组中去:“名字首字母是A到L之间的人到房间的左前方角落去。”然后这个小组中的人再按照指示进一步分组。这种包含的关系现在已经很明显了,你会看到名字以C字母开头的人是左前方角落中那群人的一分子。在这个医学调查问题中,心脏病患者最终会走到屋子的某个角落,他们中有些人不足55岁。不是每个人都能想象出这一场景的,但很多后续实验显示,人们所熟知的典型频率会使人们更容易理解一个组完全被另一个组包含的概念。上述问题中的“多少”使你想到了个体,但“几成”就不会使你有这种联想,从这点来看,这个难题的答案就不难理解了。
关于系统2的工作机制,我们从这些研究中能窥见多少?有一个已经不算新鲜的说法是,系统2并非时刻处于警惕状态。参与我们那些合取谬误实验的大学生和研究生当然都“知道”维恩图解中的逻辑,但即使所有的相关信息都摆在面前,他们也没有对此加以运用。“少即是多”模式的荒谬在奚恺元的餐具实验中表现得淋漓尽致,在“多少”的事例中也非常容易识别出来,但对