按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
行了探索。他认为我们生来就具有判断的能力,只需瞥一眼陌生人的脸,就能对这个人的两点重要事实作出判断:他有多强势(因此存在潜在的威胁性);这个人有多可信(不管他的用意可能是友好的还是充满敌意的)。脸型为判断提供了许多暗示:方下巴就是强势的信号。面部表情(微笑或皱眉)是对陌生人意图的判断提示,方下巴加上瘪嘴唇也许就预示着有麻烦了。看脸形的精确性不是很高:圆下巴并不代表温顺,笑容(在某种程度上)也是可以伪装的。不过,即使对陌生人作出判断的能力不高,具备这种能力也是我们的生存优势。
这种古老的机制在现代社会得到重新利用:它对人们如何选举有些影响。托多罗夫向他的学生展示了一些人脸的图片,有时展示的时间只有0。1秒,他让这些学生按不同属性对这些面部图片进行评估,这些属性包括可爱程度和做事能力。结果所有学生对这些图片的评估结果非常一致。托多罗夫展示给学生的那些人脸图片并不是随意组合的,而是参加竞选的那些政治家的照片。大选结束后,托多罗夫将选举结果和普林斯顿大学学生所作出的能力评估进行了比较,这些学生当时并不了解这些候选人的任何政治背景,仅凭自己对这些照片的匆匆一瞥就作出了评估。事实证明,约有70%的参议员、国会议员和地方长官的竞选活动的胜出者也正是那些在照片评估中获得较高评价的人。这一惊人结果在芬兰的全国大选中得到证实,同样的情况也发生在英国的地区选举中,澳大利亚、德国和墨西哥的众多选举中也发生过类似事件。令人惊奇的是(至少对我而言是这样的),在托多罗夫的研究中,能力评估远比可爱程度的评估对选举结果的预见能力强。
托多罗夫发现,人们总会结合力量和可信度两方面因素来评估一个人的能力。刚毅的方下巴和自信的微笑便可告诉我们,这个人很有能力。没有证据显示这些面部特征确实能预示某些政治家可以当选,但关于人们对胜出和出局候选人的判断研究显示,我们往往在投票前就会对那些不具备我们认可的面部特征的候选人持否定态度。在他的研究中,失败者引起的(负面)情感回应更强烈,我将这个例子称为“判断启发法”案例,接下来的章节中会沿用这个说法。投票者尝试着对候选人将来的任职表现生成一种印象,他们又转而依靠系统2快速自主地作出一种更加简单的判断,这一系统只有在必要时才会作出这一判断。
许多政治学者也循着托多罗夫最初研究的路子继续深入研究这一问题,他们划定了一类投票者,这类投票者往往会不由自主地听从系统1的指挥。这些投票者经常看电视,对政治却所知甚少,而那些政治学者在他们身上找到了自己一直在寻找的东西。不出所料,对于那些信息贫乏、爱看电视的投票者来说,面部特征表现出的能力对其投票的影响较大,其受影响程度约为那些信息丰富、看电视少的投票者的3倍。显然,系统1对投票选择的影响因人而异,下文中我们还会遇到一些体现个体差异性的例子。
当然,系统1理解语言,这种理解是建立在一些基本判断基础之上的,而这些判断通常又是在洞察事实和理解信息的基础上作出的。这些判断包括对相似度和代表性的判断,对因果关系的属性以及对联想和样本的可用性的判断。尽管判断的结果是用来满足任务要求的,但是没有具体任务时,这些判断活动照样也在进行着。
基本判断的内容很多,但并不是每个可能的属性都需要判断。例如,我们可以简单看看图7。
一眼看去,你便会对该图的很多特征有个初步印象。你知道左右两个长方体一样高,也很相似。然而,左边那个长方体的方块数和铺在平面上的方块数是不是一样,这可不是瞥一眼就能明了的事,而且你也想不出这堆方块能摞成多高的长方体。
仅凭一瞥系统1计算出一组线的总长度,其结果多半不对,这一点你很清楚。你认为自己绝不会这样做。事实上,这是该系统一个重要的局限性。因为系统1通过原型或一组典型事例来代表不同事物分类,它能解决好平均问题,但对总量问题就束手无策了。一个类别的规模及其所包含的实例数量,在我们判断总额变量时常常被忽略掉了。
在我们进行的众多实验中,有一项是根据那次损失惨重的埃克森,瓦尔德斯号(Exxon Valdez)原油泄漏事件的诉讼而设计的,我们询问受试者是否愿意掏钱买网来覆盖油池,因为这些油池常淹死迁徙的鸟类。受试者组成的不同小组分别表明了各组的意愿,他们愿意掏钱来拯救鸟的数量分别为2000只、20000只和200000只。如果拯救鸟类是个经济善举的话,其价值大小就要看总数这一变量了,即拯救200000只鸟应该比拯救2000只鸟更有价值。事实上,3个组的平均捐款分别是80美元、78美元和88美元,与鸟的数量没有什么关系。3组受试者做出反应的对象为原型,一只无助的小鸟被淹死的可怕画面,鸟的羽毛浸泡在黏稠的原油中。实验人员屡次发现,在这样的情形下,受试者几乎完全忽略了数量的概念。
与强度等级匹配的描述
诸如你的幸福感、总统受欢迎的程度、金融骗子的合理惩罚和政治家的未来前景等问题有一个共同的重要特点:这些问题都涉及隐含的强度或数量概念,因而我们也就可以使用“更”这个词对其进行描述:更幸福、更受欢迎、更严厉或(对政治家来说)更有力度。例如,一个候选人的政治前景可能是“她在首轮竞选就会出局”这样的背运,也可能是“她有朝一日会成为美国总统”,身居高位。
接下来我们会了解到系统1的又一新能力。强度的等级在不同领域中都有“匹配”描述。如果罪行是颜色,杀人就应该是深红,颜色比偷窃更深。如果犯罪用音乐来表达,大屠杀就应该用强音,而停车不付钱则应该用弱音。当然,你对惩罚的强度也有类似的感觉。在传统的实验中,有些人用声音的大小来表达犯罪的严重性;其他人用声音大小来表达法律惩罚的严重性。如果你听到了两个声音,一个是表达犯罪的,一个是表达惩罚的,如果一个声音比另一个声音更响的话,你会有不公平之感。
请思考这个例子(后文中还会提到这个例子):
朱莉4岁时就能阅读。
现在请将朱莉这个孩子的阅读能力与下面的强度等级进行匹配:
若某人的身高和朱莉的早慧程度一样,那他有多高?
你觉得6英尺怎么样?显然太少了。那7英尺呢?也许又太多了。你希望(:文)找到一个高度(:人)能匹配4岁孩(:书)子极强的能(:屋)力。虽然很强,但并不超群。15个月大就能阅读才是超群的能力,这就跟一个人身高7。8英尺一样。
你的工作收入多高才能与朱莉的阅读能力相匹配呢?
什么罪行的严重程度可以与朱莉的早慧程度相匹配呢?
常春藤大学的毕业学分积点多高才能与朱莉的阅读水平相匹配呢?
上述问题并不是很难回答,对吧?此外,可以肯定的是与你同处一个文化领域的人作出的匹配与你的回答会很相近。我们发现,人们根据朱莉的阅读年龄这一信息预估她的学分积点时,他们通过一种范畴向另一范畴的转换来回答这个问题,并且选出了相应的学分积点值。我们也明白为什么这种利用匹配进行预测的模式从统计学角度来看是错误的,尽管对于系统1来说这很正常,但对于统计学家以外的大多数人来说,系统2也可以接受这种做法。
思维的发散性让我们作出直觉性判断
系统1任何时候都可以同时进行多种估算,其中有些估算是持续不间断的常规评估。只要眼睛是睁开的,你的大脑就会对视觉范围内呈现出的立体事物进行评估,这种评估是对这些物体的形状、空间位置和特性等因素的全方位评价。这一评估活动的运行或对违背期望的事物进行持续监督的行为都是无意识的。与这些常规评估不同,其他评估行为只有在需要时才会进行:你不会持续评估自己有多高兴或多富裕,即使热衷政治,你也不会一直不间断地评估总统的执政前景。偶尔的判断是主观自愿的,这种判断才是有意识的。
你不会不由自主地数出每个读到的词的音节数,但如果你选择这样做,就能数对。不过,想要使刻意计算的结果很精确并非易事:我们计算的结果往往比自