按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
磛加上d或减去d,那末,c就必须变为c…(±)d,即必须以同额但按相反的方向发生变化,这样才能符合当前这种情况的各种条件。
同样,当剩余价值率m'不变,但可变资本v变化时,剩余价值量m必然发生变化,因为m=m'v,而m'v的一个因素v已有了
65
一个不同的值。
这个场合所假定的各种前提,使我们在原方程式
p'=m'v/C
之外,又由v的变化,得到了第二个方程式:
p1'=m'v1/C
其中v变为v1,现在应当求出由此而引起变化的利润率p1'。
这个利润率可以由如下的比例求出:
p':p1'=m'v/C:m'v1/C=v:v1。
也就是说,在剩余价值率和总资本不变时,原利润率和由可变资本的变化而产生的利润率之比,等于原可变资本和变化以后的可变资本之比。
假定资本原来象上面所说的那样是:
I、15000C=12000c+3000v(+3000m);现在是:
II、15000C=13000c+2000v(+2000m);
在这两个场合,C=15000,m'=100%,I的利润率20%和II的利润率13 1/3%之比,等于I的可变资本3000和II的可变资本2000之比,即20%:13 1/3%=3000:2000。
可变资本可以增加,也可以减少。我们先拿一个增加的例子来说。假定一个资本原来的构成和发生作用的情况如下:
I、100c+20v+10m;C=120,m'=50%,p'=8 1/3%。
现在,可变资本增加到30;按照前提,要使总资本保持不变,仍然=120,不变资本必须由100减少到90。所生产的剩余价值,在剩余价值率仍然是50%的情况下,就必须增加到15。因此我们
66
得到:
II、90c+30v+15m;C=120,m'=50%,p'=12 1/2%。
我们首先假定工资不变。这时,剩余价值率的其他因素,工作日和劳动强度,也必须保持不变。因此,v的增加(由20增加到30),只能表示所使用的工人人数增加了二分之一。这样,总的价值产品也将增加二分之一,由30增加到45,分配的情况和以前完全一样,2/3作为工资,1/3作为剩余价值。但在工人人数增加的同时,不变资本即生产资料的价值,却由100减少到90了。于是,我们就看到了一种情况:劳动生产率的降低与不变资本同时减少联系在一起;这种情况在经济上是可能的吗?
在农业和采掘工业中(在这两个部门,劳动生产率的降低,从而所使用的工人人数的增加,是容易理解的),这个过程——在资本主义生产的范围内和在它的基础上——就不是和不变资本的减少,而是和不变资本的增加联系在一起的。甚至在c的上述那种减少只是由于价格的下降造成时,单个资本也只有在十分例外的情形下才能完成由I到II的转变。但就投在不同国家或不同农业部门或采掘工业部门的两个独立资本来说,一个场合比另一个场合使用更多的工人(从而使用更大的可变资本)同时却使用价值更小或数量更少的生产资料的情况,就不足为奇了。问题是,什么叫劳动生产率的降低呢?难道可变资本的比例增大,就意味着劳动生产率的降低吗?
但如果我们抛弃工资不变的假定,用工资提高二分之一来解释可变资本由20提高到30,那末,情况就完全不同了。同数工人——比如说20个工人——用同量或不过略为减少的生产资料继续工作。如果工作日不变,比如说仍旧是10小时,总价值产品也就不变;它仍旧=30。但这30必须全部用来补偿预付的可变资本30;剩余价值就会消失。可是我们的前提是剩余价值率不变,象
67
I一样仍旧是50%。这只有在工作日延长二分之一,即延长到15小时的条件下,才有可能。这时,20个工人在15小时内会生产一个45的总价值,一切条件都符合了:
II、90c+30v+15m;C=120,m'=50%,p'=12 1/2%。
在这个场合,和I相比,20个工人不会使用更多的劳动资料,即工具、机器等等;只是原料或辅助材料必须增加二分之一。因此,在这些材料的价格下降时,按照我们的前提,由I转变到II,从经济上看,甚至对单个资本来说,也是能够做到的。资本家由于他的不变资本贬值可能遭受的损失,至少会由较大的利润(由于工作日的延长),得到某种程度的补偿。
现在,我们假定可变资本不是增加,而是减少。这样,我们只要把上面的例子颠倒过来,把II当作原来的资本,由II转变为I。
II、90c+30v+15m变为
I、100c+20v+10m,
很明显,这种颠倒不会使那些规定双方利润率及其互相关系的条件发生任何变化。
如果在不变资本增加时,v因所使用的工人人数减少三分之一而由30减少到20,那末,我们在这里就看到了现代工业的正常情况:劳动生产率提高,人数较少的工人使用数量较大的生产资料。这个运动必然和利润率的同时下降联系在一起,关于这一点我们将在本卷第三篇加以论述。
但是,如果v因同数工人按较低的工资被雇用而由30减少到20,那末在工作日不变时,总价值产品会仍旧=30v+15m=45;既然v下降到20,剩余价值就会增加到25,剩余价值率就会由50%增加到125%,而这是和前提相违背的。为了符合我们所规定的条件,按50%的比率计算的剩余价值,相反地必须下降到10,因
68
而总价值产品必须由45减少到30。这只有在工作日缩短三分之一的情况下,才有可能。这样,我们得到的结果就和上面一样:
100c+20v+10m;m'=50%,p'=8 1/3%。
不用说,在工资减少时劳动时间又这样缩短的情况,实际上也许是不会发生的。但这没有什么关系。利润率是许多变数的函数,如果我们要知道这些变数怎样对利润率发生影响,我们就必须依次研究每个变数单独的影响,不管这种孤立的影响对同一资本来说在经济上是不是容许发生。但是,如果一项研究涉及现实里不容许发生的情形,就必须指明一点。
2、m'不变,v可变,C因v的变化而变化
这个场合和上述场合只有程度上的区别。在这个场合,c不是在v增加时以同额减少,或在v减少时以同额增加,而是保持不变。但是,在大工业和农业的目前条件下,可变资本只是总资本的一个比较小的部分,因此,在总资本的减少或增加由可变资本的变化决定时,总资本的减少或增加也是比较小的。我们再从这样一个资本出发:
I、100c+20v+10m;C=120,m'=50%,p'=8 1/3%。
现在假定它变为:
II、100c+30v+15m;C=130,m'=50%,p'=11 7/13%。
与此相反的可变资本减少的情况,又可以由II再转变为I来加以说明。
各种经济条件本质上和上述场合一样,因此,无须重述。由I到II的转变意味着:劳动生产率降低二分之一;对100c的利用,II式需要的劳动,比I式多二分之一。这种情况在农业中可能发
69
生。【手稿中这里有一句话:“以后再来研究这种情况同地租有什么联系。”】
不过在上述场合,总资本因不变资本转化为可变资本,或可变资本转化为不变资本,而保持不变;而在这里,在可变部分增加时会有追加资本被束缚,在可变部分减少时会有原来使用的资本被游离。
3、m'和v不变,c可变,因而C也可变
在这个场合,方程式
p'=m'v/C变为:p1'=m'v/C1,
把两边共有的因素去掉,就得到如下的比例:
p1':p'=C:C1;
在剩余价值率相等,可变资本部分也相等时,利润率和总资本成反比。
例如,假定有三个资本,或同一个资本有三种不同的情况:
I、80c+20v+20m;C=100,m'=100%,p'=20%;
II、100c+20v+20m;C=120,m'=100%,p'=16 2/3%;
II、60c+20v+20m;C=80,m'=100%,p'=25%;
那末就会得到如下的比例:
20%:16 2/3%=120:100;20%:25%=80:100。
70
关于m'不变时v/C的各种变化,我们前面提出的总公式是:
p1'=m'ev/EC;现在它变为:p1'=m'v/EC,
因为v没有变化,所以因素e=v1/v在这里变为=1。
因为m'v=m,即剩余价值量,又因为m'和v都保持不变,所以m不会因C的变化而受到影响;剩余价值量在变化以后,和在变化以前一样。
假定c减为零,p'就会=m',利润率就会等于剩余价值率。
c的变化,可能由不变资本的物质要素的单纯价值变化引起,也可能由总资本技术构成的变化,即由该生产部门劳动生产率的变化引起。在后一种情况下,随着