友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八八书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

1965-零的历史-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



    这就是为什么0允许我们分解因式    
    x4+64=0    
    从我们的椭圆向窗口看下去,0消失了,轻轻的敲打出更难解决的表达式    
    x4+x2+1=0?    
    插入这样0的形式x2…x2;重新这样排列:    
    x4+2x2+1…x2=0    
    也就是:    
    (x2+1)2…x2=0    
    分解因式为:    
    (x2+1+x)(x2+1…x)=0    
    那么x5+x+1=0如何分解因式呢?这儿添加的0的形式有一点庞大:    
    (x4+x3+x2)-(x4+x3+x2)    
    最终你将算出分解因式后的结果是:    
    (x2+x+1)(x3…x2+1)=0    
    现在我们看到,0,是分解因式中的精心的舞蹈策划家,它在微积分中学中大显身手,进入最难理解的数学分支:数论。在这里,它帮助我们设计难以破解的密码。呈现出各种各样的伪装,它本身被想象力伪装。它也已经帮助我们理解了想象的本质,这是真的吗?威廉·布莱克说:“当你说想象根本无法在这个世界上找到时,你是明显无疑的在犯错误”也许,当他这么说的时候,他是对的。对我来说,这个世界是一个连续的充满想象或者幻想的世界。


第三部分 费尽周折第26节 令人愉快的天使(4)

    不要在身后留下破坏    
    设想和事实的区别是:设想或许是你所期望的,而事实是世界所期望的。那么在数学上,什么情况下我们的假设与这个世界是相吻合的呢?思想的是不是犹如膜通过内外表面的交换而进行流通呢?是不是不知为什么,却盖上了同意的签章,以我们的经验,让数学比其他任何事情都肯定吗?我们做出的结论,既不是因为忠诚也不是因为权威,而是由审稿书的最后几行得出的。有时它们像肖邦华尔兹那样欺骗性的简单,有时又像贝多芬四重奏那样雄伟,然而这些都是音乐而不是数学。    
    约翰逊(Johnson)博士曾经说过,计算的好处在于它让在心中长期不定的事变得肯定。计算法则所依赖的基础是什么呢?现在分析一个方程式,复杂的问题最后归结为:如果ab=0,那么a一定为0,或b一定为0。这个事实来源于何处呢?让我们继续下去,不是顺着时间,而是随着已经作出的广泛探索,一定会有惊人的发现。    
    我们试图证明如果a不为0,而ab为0,那么b一定为0。让我们来看一下跷跷板的简图,有关方程式的所有恐惧心理均会被驱散掉:假设ab=0意为跷跷板平衡得很好,ab在一端,0在另一端。    
    为了保持跷跷板的平衡,无论你在一端做了什么,另一端也需要得到相应的处理。设定a不为0,即要证明b为0。既然a不为0,我们就可以对其进行分割——即一直向前走,把两边都分为a份,我们知道a/a即为1,因此左边即为1·b,也就是b。最后一步是另人满意的,0/a是(1/a)·0的速写。既然我们假定a不为0,则1/a为某个数,但是任何数与0相乘后均为0。平衡的跷跷板告诉我们b=0,而这也正是我们所希望的。    
    没有不懈的追求根本就称不上是对真理的追求。我说 因为任何数与0相乘皆为0。为什么我们把它认为是一道法令,难道就不能问一下为什么这是真的吗?顺着楼梯往下走,我们要从根本上说服自己,对任意数n(或者是a,或者是k,或者是任何一个匿名起诉人的化名,我们只是想在说到任意一个数时直接联系到其他数),n·0=0。我们知道两个相当深的真理。第一个是,任何数减去自己后就没有了:k…k=0,k为任意数。另一个真理是关于乘法和加法的:两个数的和与另一个数相乘,将两个数分别与第三个数相乘所得结果再相加,这两种算法的最后结果是一样的。即d·(e+f)=d·e+d·f,这就是分配律,很奇怪既然是基本原理,却很难记住和应用,孩子们总是将5·(7+13)做错,因为这个答案应该是5·20=100,这与5·7+5·13是一样的,而他们老是在一个数上忘记乘以5。    
    但是我们不会忘记。我们将这两个真理摩擦后即会迸发出火花,即n·0=0。既然0和k…k是一样的,我们就可以将n·0改写成n·(k…k)。现在应用分配律:n·0=n·(k…k)=nk…nk,nk仅为某一个数,于是nk…nk即为一个数减去自身,即为0:n·0=n·(k…k)=nk…nk=0穿过等式的桥梁,一边为n·0,另一边为0。    
    我们最终肯定是0吗?你认为在乘法中,0是个无效因子吗?对人类特性的考察始于法国革命的整肃,纯洁的人总是发现有人更纯洁。难道我们就不需要更基础的原理来支持以上的两个规定吗?如果我们做了,难道就不需要前提,顺着没有尽头的螺旋物到达火苗没有熄灭的地方?对于一个比从罗伯斯比尔(Robespierre)和革命群众那里得到的更加深刻的事实,推理所要求的确定性是达不到的,这是由推理思想本身的特性造成的。为了结束无限的回归,我们不得不在某一点上说:“我们掌握的这些定理是不言自明的”。    
    这些就是分配律,以及对于任意数来说k…k=0。如果你愿意(用希腊语意为认为值得),称这些最后的归结点为公理;或者仅仅因为出于论据考虑,接受罗马法庭的气氛,称之为基本原理;或者赋予它们额外的推理地位,就像直观的或赘述的定理;或者称它们是我们正好碰上的一场游戏的专断规则,或者是相关定理;或者从一开始就折射出了我们特殊的大脑工作的可能性:所有这些都承认我们没有其他的法庭去上诉,对我们自己而言,这些定理是显而易见的。    
    在我们所见到的建筑物的背后,我们是背景的转换者和操纵者:在世界从何来又向何处去的问题上,是不见其人的伴侣。这种抽象是伟大的典型不可避免的结果,永远的真实与永远的不被忘却是等同的。在这种稀薄的大气压力下,0将承担另一个变形体,那就是使自己适合苦行者的生活格言。    
    由于印度数学家将重点从它们是什么转移到了它们做了什么,我们看到了0变成了像其他数一样的一个数。后来,由于它们变得在解方程式中有价值,因此它们的地位得到改变,在谈到结构时,在语言中开始出现迹象,数字不再是抽象的事,而是一个实在的物。我们不仅可以说“四棵树”,而且可以只说4;不仅可以说是0个千,还可以单说0。现在由于我们试图明白这些数字是如何工作的,我们明白(用我们的格言)把它们放在一起就比它们本来单独存在时要多:如果我们完全理解了加和乘的操作,把数字相加或相乘的结果,就犹如在夏日里水果会成熟一样另人深信不疑。    
    分配的原理告诉我们加法和乘法是如何相互作用的。应用牛顿的观点我要思考什么,因此得到了其他的原理。牛顿研究万有引力,他停止问这是什么(流体、物质、力),而是问它是如何工作的。随着他的关注中心从古老的问题上转移到更加抽象的力学问题上,在重力的影响下,他发现天体间的相互吸引力与它们之间的距离的平方成反比。最终证实这对于理解这个世界,以及预测天体在宇宙中的位置非常有用。    
    用同样的精神,数学家们逐渐地不再追问加法和乘法是什么,而是坐下来开始整理它们是如何运算的。考虑到避免被无关的运算名称和符号所误导,遂用中性符号“*”表示,也就逐渐形成了以下原理:    
    1。将任意两个数a和b相加或相乘,将得到另一个数c。即a*b=c    
    2。a和b的顺序并不重要,结果是一样的,即a*b=b*a    
    3。当你对三个数a、b、c进行运算时,无论你如何组织它们,结果是一样的:a*(b*c)=(a*b)*c    
    4。有一个特殊的数,我们称之为e,对于任何一个数a与e相加或相乘,其结果均为a:a*e=a    
    5。对任意数a,还有另外一个数a’,当a与a’相加或相乘时就得到了这个特别的数e:a*a’=e    
    这些原理告诉你关于加法和乘法的所有规则,但是我们感兴趣的是加和乘,+和·。用*其结果是什么呢?奇怪的是,似乎都可以描述。加并不是乘:2+3≠2·3。经过这种严格的区分,我们还不简化自己吗?    
    0的出现拯救了时代,如定理4中所描述的那个特定的数字e是什么呢?对加法来说,e是0:也就是说a+0=0。然而对于乘法来说e是1:a·1=a。0因为卸下历史加在它身上的布袋,成为加法的助手,为被加数本身。同样1也被分离出
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!