按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
〔淳风等按:母互乘子,副并为平实知,定此平实主限,众子所当损益知,
限为平。〕
母相乘为法。
〔母相乘为法知,亦齐其子,又同其母。〕
以列数乘未并者各自为列实。亦以列数乘法。
〔此当副置列数除平实,若然则重有分,故反以列数乘同齐。
淳风等按:问云所平之分多少不定,或三或二,列位无常。平三知,置位三
重;平二知,置位二重。凡此之例,一准平分不可豫定多少,故直云列数而已。〕
以平实减列实,余,约之为所减。并所减以益于少。以法命平实,各得其平。
今有七人,分八钱三分钱之一。问人得几何?答曰:人得一钱二十一分钱之
四。
又有三人三分人之一,分六钱三分钱之一、四分钱之三。问人得几何?答曰:
人得二钱八分钱之一。
○经分
〔淳风等按:经分者,自合分已下,皆与诸分相齐,此乃直求一人之分。以
人数分所分,故曰经分也。〕
术曰:以人数为法,钱数为实,实如法而一。有分者通之。
〔母互乘子知,齐其子;母相乘者,同其母。以母通之者,分母乘全内子。
乘,散全则为积分,积分则与子相通,故可令相从。凡数相与者谓之率。率知,
自相与通。有分则可散,分重叠则约也;等除法实,相与率也。故散分者,必令
两分母相乘法实也。〕
重有分者同而通之。
〔又以法分母乘实,实分母乘法。此谓法、实俱有分,故令分母各乘全分内
子,又令分母互乘上下。〕
今有田广七分步之四,从五分步之三,问为田几何?答曰:三十五分步之十
二。
又有田广九分步之七,从十一分步之九,问为田几何?答曰:十一分步之七。
又有田广五分步之四,从九分步之五,问为田几何?答曰:九分步之四。
○乘分
〔淳风等按:乘分者,分母相乘为法,子相乘为实,故曰乘分。〕
术曰:母相乘为法,子相乘为实,实如法而一。
〔凡实不满法者而有母、子之名。若有分,以乘其实而长之,则亦满法,乃
为全耳。又以子有所乘,故母当报除。报除者,实如法而一也。今子相乘则母各
当报除,因令分母相乘而连除也。此田有广从,难以广谕。设有问者曰:马二十
匹,直金十二斤。今卖马二十匹,三十五人分之,人得几何?答曰:三十五分斤
之十二。其为之也,当如经分术,以十二斤金为实,三十五人为法。设更言马五
匹,直金三斤。今卖马四匹,七人分之,人得几何?答曰:人得三十五分斤之十
二。其为之也,当齐其金、人之数,皆合初问入于经分矣。然则分子相乘为实者,
犹齐其金也;母相乘为法者,犹齐其人也。同其母为二十,马无事于同,但欲求
齐而已。又,马五匹,直金三斤,完全之率;分而言之,则为一匹直金五分斤之
三。七人卖四马,一人卖七分马之四。金与人交互相生。所从言之异,而计数则
三术同归也。〕
今有田广三步三分步之一,从五步五分步之二,问为田几何?答曰:十八步。
又有田广七步四分步之三,从十五步九分步之五,问为田几何?答曰:一百
二十步九分步之五。
又有田广十八步七分步之五,从二十三步十一分步之六,问为田几何?答曰:
一亩二百步十一分步之七。
○大广田
〔淳风等按:大广田知,初术直有全步而无余分;次术空有余分而无全步;
此术先见全步,复有余分,可以广兼三术,故曰大广。〕
术曰:分母各乘其全,分子从之,
〔分母各乘其全,分子从之者,通全步内分子。如此则母、子皆为实矣。〕
相乘为实。分母相乘为法。
〔犹乘分也。〕
实如法而一。
〔今为术广从俱有分,当各自通其分。命母入者,还须出之,故令分母相乘
为法而连除之。〕
今有圭田广十二步,正从二十一步,问为田几何?答曰:一百二十六步。
又有圭田广五步二分步之一,从八步三分步之二,问为田几何?答曰:二十
三步六分步之五。
术曰:半广以乘正从。
〔半广知,以盈补虚为直田也。亦可半正从以乘广。按:半广乘从,以取中
平之数,故广从相乘为积步。亩法除之,即得也。〕
今有邪田,一头广三十步,一头广四十二步,正从六十四步。问为田几何?
答曰:九亩一百四十四步。
又有邪田,正广六十五步,一畔从一百步,一畔从七十二步。问为田几何?
答曰:二十三亩七十步。
术曰:并两斜而半之,以乘正从若广。又可半正从若广,以乘并。亩法而一。
〔并而半之者,以盈补虚也。〕
今有箕田,舌广二十步,踵广五步,正从三十步,问为田几何?答曰:一亩
一百三十五步。
又有箕田,舌广一百一十七步,踵广五十步,正从一百三十五步,问为田几
何?答曰:四十六亩二百三十二步半。
术曰:并踵、舌而半之,以乘正从。亩法而一。
〔中分箕田则为两邪田,故其术相似。又可并踵、舌,半正从,以乘之。〕
今有圆田,周三十步,径十步。
〔淳风等按:术意以周三径一为率,周三十步,合径十步。今依密率,合径
九步十一分步之六。〕
问为田几何?答曰:七十五步。
〔此于徽术,当为田七十一步一百五十七分步之一百三。
淳风等按:依密率,为田七十一步二十三分步之一十三。〕
又有圆田,周一百八十一步,径六十步三分步之一。
〔淳风等按:周三径一,周一百八十一步,径六十步三分步之一。依密率,
径五十七步二十二分步之一十三。〕
问为田几何?答曰:十一亩九十步十二分步之一。
〔此于徽术,当为田十亩二百八步三百一十四分步之一百十三。
淳风等按:依密率,当为田十亩二百五步八十八分步之八十七。〕
术曰:半周半径相乘得积步。
〔按:半周为从,半径为广,故广从相乘为积步也。假令圆径二尺,圆中容
六觚之一面,与圆径之半,其数均等。合径率一而外周率三也。
又按:为图,以六觚之一面乘一弧半径,三之,得十二觚之幂。若又割之,
次以十二觚之一面乘一弧之半径,六之,则得二十四觚之幂。割之弥细,所失弥
少。割之又割,以至于不可割,则与圆周合体而无所失矣。觚面之外,又有余径。
以面乘余径,则幂出觚表。若夫觚之细者,与圆合体,则表无余径。表无余径,
则幂不外出矣。以一面乘半径,觚而裁之,每辄自倍。故以半周乘半径而为圆幂。
此一周、径,谓至然之数,非周三径一之率也。周三者,从其六觚之环耳。以推
圆规多少之觉,乃弓之与弦也。然世传此法,莫肯精核;学者踵古,习其谬失。
不有明据,辩之斯难。凡物类形象,不圆则方。方圆之率,诚著于近,则虽远可
知也。由此言之,其用博矣。谨按图验,更造密率。恐空设法,数昧而难譬,故
置诸检括,谨详其记注焉。
割六觚以为十二觚术曰:置圆径二尺,半之为一尺,即圆里觚之面也。令
半径一尺为弦,半面五寸为句,为之求股。以句幂二十五寸减弦幂,余七十五寸,
开方除之,下至秒、忽。又一退法,求其微数。微数无名知以为分子,以十为分
母,约作五分忽之二。故得股八寸六分六厘二秒五忽五分忽之二。以减半径,余
一寸三分三厘九毫七秒四忽五分忽之三,谓之小句。觚之半面又谓之小股。为之
求弦。其幂二千六百七十九亿四千九百一十九万三千四百四十五忽,余分弃之。
开方除之,即十二觚之一面也。
割十二觚以为二十四觚术曰:亦令半径为弦,半面为句,为之求股。置上
小弦幂,四而一,得六百六十九亿八千七百二十九万八千三百六十一忽,余分弃之,
即句幂也。以减弦幂,其余开方除之,得股九寸六分五厘九毫二秒五忽五分忽之
四。以减半径,余三分四厘七秒四忽五分忽之一,谓之小句。觚之半面又谓之小
股。为之求小弦。其幂六百八十一亿四千八百三十四万九千四百六十六忽,余分
弃之。开方除之,即二十四觚之一面也。
割二十四觚以为四十八觚术曰:亦令半径为弦,半面为句,为之求股。置上
小弦幕,四而一,得一