按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
十七里半。故曰不足。“令之十六日,多一百四十里”者,据良马十六日凡行四
千六百四十八里;除先去齐三千里,定还迎驽马一千六百四十八里,驽马十六日
凡行一千四百九十二里。并良、驽二马所行,得三千一百四十里。课于三千里,
余有一百四十里。故谓之多也。以盈不足之,实如法而一,得日数者,即设差不
盈不朒之正数。以二马初日所行里乘十五日,为一十五日平行数。求初末益疾
减迟之数者,并一与十四,以十四乘而半之,为中平之积。又令益疾减迟里数乘
之,各为减益之中平里。故各减益平行数,得一十五日定行里。若求后一日,以
十六日之定行里数乘日分子,如日分母而一,各得日分子之定行里数。故各并十
五日定行里,即得。其驽马奇半里者,法为全里之分,故破半里为半法,以增残
分,即合所问也。〕
今有人持钱之蜀贾,利十,三。初返归一万四千,次返归一万三千,次返归
一万二千,次返归一万一千,后返归一万。凡五返归钱,本利俱尽。问本持钱及
利各几何?答曰:本三万四百六十八钱三十七万一千二百九十三分钱之八万四千
八百七十六。利二万九千五百三十一钱三十七万一千二百九十三分钱之二十八万
六千四百一十七。
术曰:假令本钱三万,不足一千七百三十八钱半;令之四万,多三万五千三
百九十钱八分。
〔按:假令本钱三万,并利为三万九千;除初返归留,余,加利为三万二千
五百;除二返归留,余,又加利为二万五千三百五十;除第三返归留,余,又加
利为一万七千三百五十五;除第四返归留,余,又加利为八千二百六十一钱半;
除第五返归留,合一万钱,不足一千七百三十八钱半。若使本钱四万,并利为五
万二千;除初返归留,余,加利为四万九千四百;除第二返归留,余,又加利为
四万七千三百二十;除第三返归留,余,又加利为四万五千九百一十六;除第四
返归留,余,又加利为四万五千三百九十钱八分;除第五返归留,合一万,余三
万五千三百九十钱八分,故曰多。
又术:置后返归一万,以十乘之,十三而一,即后所持之本。加一万一千,
又以十乘之,十三而一,即第四返之本。加一万二千,又以十乘之,十三而一,
即第三返之本。加一万三千,又以十乘之,十三而一,即第二返之本。加一万四
千,又以十乘之,十三而一,即初持之本。并五返之钱以减之,即利也。〕
今有垣厚五尺,两鼠对穿。大鼠日一尺,小鼠亦日一尺。大鼠日自倍,小鼠
日自半。问几何日相逢?各穿几何?答曰:二日一十七分日之二。大鼠穿三尺四
寸十七分寸之一十二,小鼠穿一尺五寸十七分寸之五。
术曰:假令二日,不足五寸;令之三日,有余三尺七寸半。
〔大鼠日倍,二日合穿三尺;小鼠日自半,合穿一尺五寸;并大鼠所穿,合
四尺五寸。课于垣厚五尺,是为不足五寸。令之三日,大鼠穿得七尺,小鼠穿得
一尺七寸半。并之,以减垣厚五尺,有余三尺七寸半。以盈不足术求之,即得。
以后一日所穿乘日分子,如日分母而一,即各得日分子之中所穿。故各增二日定
穿,即合所问也。〕
卷八
○方程(以御错糅正负)
今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,
下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、
中、下禾实一秉各几何?答曰:上禾一秉九斗四分斗之一。中禾一秉四斗四分斗
之一。下禾一秉二斗四分斗之三。
方程
〔程,课程也。群物总杂,各列有数,总言其实。令每行为率。二物者再程,
三物者三程,皆如物数程之。并列为行,故谓之方程。行之左右无所同存,且为
有所据而言耳。此都术也,以空言难晓,故特系之禾以决之。又列中、左行如右
行也。〕
术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗于右方。中、左禾列
如右方。以右行上禾遍乘中行,而以直除。
〔为术之意,令少行减多行,反复相减,则头位必先尽。上无一位,则此行
亦阙一物矣。然而举率以相减,不害余数之课也。若消去头位,则下去一物之实。
如是叠令左右行相减,审其正负,则可得而知。先令右行上禾乘中行,为齐同之
意。为齐同者,谓中行直减右行也。从简易虽不言齐同,以齐同之意观之,其义
然矣。〕
又乘其次,亦以直除。
〔复去左行首。〕
然以中行中禾不尽者遍乘左行,而以直除。
〔亦令两行相去行之中禾也。〕
左方下禾不尽者,上为法,下为实。实即下禾之实。
〔上、中禾皆去,故余数是下禾实,非但一秉。欲约众秉之实,当以禾秉数
为法。列此,以下禾之秉数乘两行,以直除,则下禾之位皆决矣。各以其余一位
之秉除其下实。即计数矣用算繁而不省。所以别为法,约也。然犹不如自用其旧。
广异法也。〕
求中禾,以法乘中行下实,而除下禾之实。
〔此谓中两禾实,下禾一秉实数先见,将中秉求中禾,其列实以减下实。而
左方下禾虽去一,以法为母,于率不通。故先以法乘,其通而同之。俱令法为母,
而除下禾实。以下禾先见之实令乘下禾秉数,即得下禾一位之列实。减于下实,
则其数是中禾之实也。〕
余,如中禾秉数而一,即中禾之实。
〔余,中禾一位之实也。故以一位秉数约之,乃得一秉之实也。〕
求上禾,亦以法乘右行下实,而除下禾、中禾之实。
〔此右行三禾共实,合三位之实。故以二位秉数约之,乃得一秉之实。今中
下禾之实其数并见,令乘右行之禾秉以减之。故亦如前各求列实,以减下实也。〕
余,如上禾秉数而一,即上禾之实。实皆如法,各得一斗。
〔三实同用,不满法者,以法命之。母、实皆当约之。〕
今有上禾七秉,损实一斗,益之下禾二秉,而实一十斗;下禾八秉,益实一
斗,与上禾二秉,而实一十斗。问上、下禾实一秉各几何?答曰:上禾一秉实一
斗五十二分斗之一十八。下禾一秉实五十二分斗之四十一。
术曰:如方程。损之曰益,益之曰损。
〔问者之辞虽?今按:实云上禾七秉,下禾二秉,实一十一斗;上禾二秉,
下禾八秉,实九斗也。“损之曰益”,言损一斗,余当一十斗;今欲全其实,当
加所损也。“益之曰损”,言益实以一斗,乃满一十斗;今欲知本实,当减所加,
即得也。〕
损实一斗者,其实过一十斗也;益实一斗者,其实不满一十斗也。
〔重谕损益数者,各以损益之数损益之也。〕
今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗。上取中、中取下、下取
上各一秉而实满斗。问上、中、下禾实一秉各几何?答曰上禾一秉实二十五分斗
之九。中禾一秉实二十五分斗之七。下禾一秉实二十五分斗之四。
术曰:如方程。各置所取。
〔置上禾二秉为右行之上,中禾三秉为中行之中,下禾四秉为左行之下,所
取一秉及实一斗各从其位。诸行相借取之物皆依此例。〕
以正负术入之。
正负术曰:
〔今两算得失相反,要令正负以名之。正算赤,负算黑,否则以邪正为异。
方程自有赤、黑相取,法、实数相推求之术。而其并减之势不得广通,故使赤、
黑相消夺之,于算或减或益。同行异位殊为二品,各有并、减之差见于下焉。著
此二条,特系之禾以成此二条之意。故赤、黑相杂足以定上下之程,减、益虽殊
足以通左右之数,差、实虽分足以应同异之率。然则其正无入以负之,负无入以
正之,其率不妄也。〕
同名相除,
〔此谓以赤除赤,以黑除黑,行求相减者,为去头位也。然则头位同名者,
当用此条,头位异名者,当用下条。〕
异名相益,
〔益行减行,当各以其类矣。其异名者,非其类也。非其类者,犹无对也,
非所得减也。故赤用黑对则除,黑;无对则除,黑;黑用赤对则除,赤;无对则
除,赤;赤黑并于本数。此为相益之,皆所以为消夺。消夺之与减益成一实也。
术