按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
袤而半之,高乘之,即二堑堵;并之,以为甍积也。〕
刍童、曲池、盘池、冥谷皆同术。
术曰:倍上袤,下袤从之;亦倍下袤,上袤从之;各以其广乘之,并,以高
若深乘之,皆六而一。
〔按:此术假令刍童上广一尺,袤二尺;下广三尺,袤四尺;高一尺。其用
棋也,中央立方二,四面堑堵六,四角阳马四。倍下袤为八,上袤从之,为十,
以高、广乘之,得积三十尺。是为得中央立方各三,两端堑堵各四,两旁堑堵各
六,四角阳马亦各六。复倍上袤,下袤从之,为八,以高、广乘之,得积八尺。
是为得中央立方亦各三,两端堑堵各二。并两旁,三品棋皆一而为六。故六而一,
即得。为术又可令上下广袤差相乘,以高乘之,三而一,亦四阳马;上下广袤
互相乘,并,而半之,以高乘之,即四面六堑堵与二立方;并之,为刍童积。又
可令上下广袤互相乘而半之,上下广袤又各自乘,并,以高乘之,三而一,即得
也。〕
其曲池者,并上中、外周而半之,以为上袤;亦并下中、外周而半之,以为
下袤。
〔此池环而不通匝,形如盘蛇,而曲之。亦云周者,谓如委谷依垣之周耳。
引而伸之,周为袤。求袤之意,环田也。〕
今有刍童,下广二丈,袤三丈;上广三丈,袤四丈;高三丈。问积几何?答
曰:二万六千五百尺。
今有曲池,上中周二丈,外周四丈,广一丈;下中周一丈四尺,外周二丈四
尺,广五尺;深一丈。问积几何?答曰:一千八百八十三尺三寸少半寸。
今有盘池,上广六丈,袤八丈;下广四丈,袤六丈,深二丈。问积几何?答
曰:七万六百六十六尺太半尺。
负土往来七十步,其二十步上下棚除,棚除二当平道五;踟蹰之间十加一;
载输之间三十步,定一返一百四十步。土笼积一尺六寸。秋程人功行五十九里半。
问人到积尺及用徒各几何?答曰:人到二百四尺。用徒三百四十六人一百五十三
分人之六十二。
术曰:以一笼积尺乘程行步数,为实。往来上下棚除二当平道五。
〔棚,阁;除,斜道;有上下之难,故使二当五也。〕
置定往来步数,十加一,及载输之间三十步,以为法。除之,所得即一人所
到尺。以所到约积尺,即用徒人数。
〔按:此术棚,阁;除,斜道;有上下之难,故使二当五。置定往来步数,
十加一,及载输之间三十步,是为往来一返凡用一百四十步。于今有术为所有率,
笼积一尺六寸为所求率,程行五十九里半为所有数,而今有之,即所到尺数。以
所到约积尺,即用徒人数者,此一人之积除其众积尺,故得用徒人数。为术又
可令往来一返所用之步约程行为返数,乘笼积为一人所到。以此术与今有术相
反覆,则乘除之或先后,意各有所在而同归耳。〕
今有冥谷,上广二丈,袤七丈;下广八尺,袤四丈;深六丈五尺。问积几何?
答曰:五万二千尺。
载土往来二百步,载输之间一里。程行五十八里;六人共车,车载三十四尺
七寸。问人到积尺及用徒各几何?答曰:人到二百一尺五十分尺之十三。用徒二
百五十八人一万六十三分人之三千七百四十六。
术曰:以一车积尺乘程行步数,为实。置今往来步数,加载输之间一里,以
车六人乘之,为法。除之,所得即一人所到尺。以所到约积尺,即用徒人数。
〔按:此术今有之义。以载输及往来并得五百步,为所有率,车载三十四尺
七寸为所求率,程行五十八里,通之为步,为所有数,而今有之,所得即一车所
到。欲得人到者,当以六人除之,即得。术有分,故亦更令乘法而并除者,亦用
以车尺数以为一人到土率,六人乘五百步为行率也。又亦可五百步为行率,令六
人约车积尺数为一人到土率,以负土术入之。入之者,亦可求返数也。要取其会
通而已。术恐有分,故令乘法而并除。以所到约积尺,即用徒人数者,以一人所
到积尺除其众积,故得用徒人数也。〕
今有委粟平地,下周一十二丈,高二丈。问积及为粟几何?答曰:积八千尺。
〔于徽术,当积七千六百四十三尺一百五十七分尺之四十九。
淳风等按:依密率,为积七千六百三十六尺十一分尺之四。〕
为粟二千九百六十二斛二十七分斛之二十六。
〔于徽术,当粟二千八百三十斛一千四百一十三分斛之一千二百一十。
淳风等按:依密率,为粟二千八百二十八斛九十九分斛之二十八。〕
今有委菽依垣,下周三丈,高七尺。问积及为菽各几何?答曰:积三百五十
尺。
〔依徽术,当积三百三十四尺四百七十一分尺之一百八十六。
淳风等按:依密率,为积三百三十四尺十一分尺之一。〕
为菽一百四十四斛二百四十三分斛之八。
〔依徽术,当菽一百三十七斛一万二千七百一十七分斛之七千七百七十一。
淳风等按:依密率,为菽一百三十七斛八百九十一分斛之四百三十三。〕
今有委米依垣内角,下周八尺,高五尺。问积及为米各几何?答曰:积三十
五尺九分尺之五。
〔于徽术,当积三十三尺四百七十一分尺之四百五十七。
淳风等按:依密率,当积三十三尺三十三分尺之三十一。〕
为米二十一斛七百二十九分斛之六百九十一。
〔于徽术,当米二十斛三万八千一百五十一分斛之三万六千九百八十。
淳风等按:依密率,为米二十斛二千六百七十三分斛之二千五百四十。〕
委粟术曰:下周自乘,以高乘之,三十六而一。
〔此犹圆锥也。于徽术,亦当下周自乘,以高乘之,又以二十五乘之,九百
四十二而一也。〕
其依垣者,
〔居圆锥之半也。〕
十八而一。
〔于徽术,当令此下周自乘,以高乘之,又以二十五乘之,四百七十一而一。
依垣之周,半于全周。其自乘之幂居全周自乘之幂四分之一,故半全周之法以为
法也。〕
其依垣内角者,
〔角,隅也,居圆锥四分之一也。〕
九而一。
〔于徽术,当令此下周自乘,而倍之,以高乘之,又以二十五乘之,四百七
十一而一。依隅之周,半于依垣。其自乘之幂居依垣自乘之幂四分之一,当半依
垣之法以为法。法不可半,故倍其实。又此术亦用周三径一之率。假令以三除周,
得径;若不尽,通分内子,即为径之积分。令自乘,以高乘之,为三方锥之积分。
母自相乘得九,为法,又当三而一,得方锥之积。从方锥中求圆锥之积,亦犹方
幂求圆幂。乃当三乘之,四而一,得圆锥之积。前求方锥积,乃以三而一;今求
圆锥之积,复合三乘之。二母既同,故相准折。惟以四乘分母九,得三十六而连
除,圆锥之积。其圆锥之积与平地聚粟同,故三十六而一。
淳风等按:依密率,以七乘之,其平地者,二百六十四而一;依垣者,一百
三十二而一;依隅者,六十六而一也。〕
程粟一斛积二尺七寸;
〔二尺七寸者,谓方一尺,深二尺七寸,凡积二千七百寸。〕
其米一斛积一尺六寸五分寸之一;
〔谓积一千六百二十寸。〕
其菽、荅、麻、麦一斛皆二尺四寸十分寸之三。
〔谓积二千四百三十寸。此为以精粗为率,而不等其概也。粟率五,米率三,
故米一斛于粟一斛,五分之三;菽、荅、麻、麦亦如本率云。故谓此三量器为概,
而皆不合于今斛。当今大司农斛,圆径一尺三寸五分五厘,正深一尺,于徽术,
为积一千四百四十一寸,排成余分,又有十分寸之三。王莽铜斛于今尺为深九寸
五分五厘,径一尺三寸六分八厘七毫。以徽术计之,于今斛为容九斗七升四合有
奇。《周官·考工记》:朅氏为量,深一尺,内方一尺而圆外,其实一釜。于徽
术,此圆积一千五百七十寸。《左氏传》曰:“齐旧四量:豆、区、釜、钟。四
升曰豆,各自其四,以登于釜。釜十则钟。”钟六斛四斗。釜六斗四升,方一尺,
深一尺,其积一千寸。若此方积容六斗四升,则通外圆积成旁,容十斗四合一龠
五分龠之三也。以数相乘之,则斛之制:方一尺而圆其外,庣旁一厘七毫,幂一
百五十六寸四分寸之一,深一尺,