友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八八书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

形而上学-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




…… 339

    形而上学。

    73。

    后实为第三个1,而后于原1者两个顺次,——这样诸单位必是先于照它们所点到的数序;例如在2中,已有第三单位先3而存在,第四第五单位已在3中,先于4与5两数而存在。现在这些思想家固然都没有说过诸单位是这样的完全不相通,但照他们的原理推演起来,情况便是这样,虽则实际上这是不可能的。因为这是合理的,假如有第一单位或第一个1,诸单位应有先于与后于之分,假如有一个第一个2,则诸2也应有先于与后于之分;在第一之后这必须会有第二也是合理的,如有第二,也就得有第三,其余顺序相接,(同时作两样叙述,以意式之1为第一,将另一单位次之其后为第一个1,又说2是次于意式之1以后为第一个2,这是不可能的)

    ,但他们制造了第一单位或第一个1,却不再有第二个1与第三个1,他们制造了第一个2,却不再制造第二个2与第三个2。

    假如所有单位均不相通,这也清楚地不可能有“本2”与“本3”

    ;它数亦然。

    因为无论单位是未分化的或是每个都各不相同,数必须以加法来点计,例如2是在1上加1,3由2上加1,4亦相似。这样,数不能依照他们制数的方式由“两”

    与“一”来创造;〈依照加法〉2成为3的部分,3成为4的部分,挨次各数亦然,然而他们却说4由第一个2与那未定之2生成,——这样两个2的产物①有别于本2;如其不然,本2将为4的一个部分,而加上另一个2。

    相似地2将由“本

    ①未定之2为“倍”

    ,作用于意式之2而产生两个2,这两个2之成4,异于两个意式之2。

…… 340

    。

    83。形而上学

    1“加上另一个1组成;若然如此,则其另一要素就不能是”未定之2“

    ;因为这另一要素应创造另一个单位,而不该象未定之二那样创造一个已定之2。

    又,在本3与本2之外怎能有别的诸3与诸2?

    它们又怎样由先于与后于的诸单位来组成?

    所有这些都是荒唐的寓言,“原2”

    〈第一个2〉与“本3”

    〈绝对3〉均不能成立。可是,若以“一与未定之两”为之要素,则这些就都该存在。这样的结果倘是不可能的,那么要将这些作为创造原理就也不可能。

    于是,假如诸单位品种各各不同,这些和类乎这些的结果必然跟着发生。但(三)假如只是每一数中的各单位为未分化而互通,各数中的各单位则是互已分化而品种各不相同,这样疑难照样存在。例如在本10〈意式之10〉之中有十个单位,10可以由十个1组成,也可以由两个5组成。但“本10”既非任何偶然的单位所组成,①——在10中的各单位必须相异。因为,它们若不相异,那么组成10的两5也不会相异;但因为两5应为相异,各单位也将相异。然而,假如它们相异,是否10之中除了两5以外没有其它别异的5呢?

    假如那里没有别的5,这就成为悖解;②若然是另有其它种类的5,这样的5所组成的10,又将是那一类的10?因为在10中

    ①罗斯诠释此语:意式之10是一个整数,其中作为单位的各数亦应为意式数,而名为一个整数;因此那两个5应是不同品种,方能以两个不同事物为要素而合成一个整体,于十个1而论亦然。但是这与我们现在的持论就相矛盾了。

    ②此语颇难索解,特来屯尼克诠释品种相异的5盖为各单位以不同方式组合起来的5。

…… 341

    形而上学。

    93。

    就只有自己这本10,另无它10。

    照他们的主张,4确乎必不是任何偶然的诸2所可组成;他们说那未定之2接受了那已定之2,造成两个2;因为未定之2的性质15就在使其所受之数成倍。

    又,把2脱离其两个单位而当作一实是,把3脱离其三个单位而当作一实是,这怎么才可能?或是由于一个参与在别个之中,象“白人”一样遂成为不同于“白”与“人”

    (因为白人参与于两者)

    ,或是由于一个为别个的差异,象“人”

    之不同于“动物”和“两脚”一样。

    又,有些事物因接触而成一,有些因混和而成一,有些因位置而成一;这些命意均不能应用那组成这2或这3的诸单位,恰象两个人在一起不是使之各解脱其个人而别成为整一事物,各单位之组成列数者意必同然。它们之原为不可区分,于它们作为数而论无关重要;诸点也不可区分,可是一对的点不殊于那两个单点。

    但,我们也不能忽忘这个后果,跟着还有“先于之2”与“后于之2”

    ,它数亦然。就算4中的两个2是同时的;这些在8之中就得是“先于之2”了,象2创生它们一样,它们创生“本8”中的两4。因此,第一个2若为一意式,这些2也得是某类的意式。同样的道理适用于诸1;因为“第一个2”中的诸1,跟着第一个2创生4而入于本4之中,所以一切1都成意式,而一个意式将是若干意式所组成。所以清楚地,照这样的意式之出于组合,若说有动物的诸意式时,人们将可说动物是诸动物所组成。

    总之,分化单位使成不同品种之任何方式均为一荒唐之寓言;我所说寓言的意义,就是为配合一个假设而杜撰的说

…… 342

    。

    043。形而上学

    明。我们所见的一〈单位〉无论在量上和在质上不异于别个一〈单位〉,而数必须是或等或不等——一切数均应如此,而抽象〈单位〉所组成的数更应如此——所以,凡一数若既不大于亦不小于另一数,便应与之相等;但在数上所说的相等,于两事物而言,若品种不异而相等者则谓之相同。倘品种有异,虽“本10”中之诸2,即便它们相等,也不能不被分化,谁要说它们并不分化,又能提出怎样的理由?

    又,假如每个1加另1为2,从“本2”中来的1和从“本3”中来的1亦将成2。

    现在(甲)这个2将是相异的1所组成;(乙)这10个2对于3应属先于抑为后于?似乎这必是先于;因为其中的一个单位与3为同时,另一个则与2为同时。

    于我们讲来,一般1与1若合在一起就是2,无论事物是否相等或不等,例如这个善一和这个恶一,或是一个人和一匹马,总都是“2”。

    假如“本3”为数不大于2,这是可诧异的;假如这是较大,那么清楚地其中必有一个与2相等的数,而这数便应与“本2”不相异。但是,若说有品种相异的第一类数与第二类数这就不可能了。

    意式也不能是数。

    因为在这特点上论,倘真以数为意式,那么主张单位应各不同的人就该是正确的了;这在先曾已讲过。

    ①通式是整一的;但“诸1”若不异,“诸2”与“诸3”亦应不异。所以当我们这样计点——“1,2”……他们就必得说这个并不是1个加于前一个数;因为照我们的做法,数就

    ①见1081a5—17。

…… 343

    形而上学。

    143。

    不是从未定之2制成,而一个数也不能成为一个意式;因为这样一个意式将先另一个意式存在着而所有诸通式将成为一个通式的诸部分。

    ①这样,由他们的假设来看,他们的推论都是对的,但从全局来看,他们是错的;他们的观念为害匪浅,他们也得承认这种主张本身引致某些疑难,——当我们计点时说“1,2,3”究属是在一个加一个点各数呢,还是在点各个部分呢。

    ②但是我们两项都做了;所以从这问题肇致这样重大的纷歧,殊为荒唐。

    章 八最好首先决定什么是数的差异,假如一也有差异,则一的差异又是什么。单位的差异必须求之于量或质上;单位在这些上面似乎均有差异。

    但数作为数论,则在量上各有差异。

    假如单位真有量差,则虽是有一样多单位的两数也将有量差。

    又在这些具有量差的单位中是那第一单位为较大或较小,抑是第二单位在或增或减?所有这些都是不合理的拟议。它们也不能在质上相异。因为对于诸单位不能系以属性;即便对于列数,质也只能是跟
返回目录 上一页 下一页 回到顶部 1 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!