友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八八书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

价格理论-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



更加一般的论述,并且也把垄断条件包括进来。

    (1)对一条给定需求曲线而言的最优产量

    单个厂商产品的需求曲线表示,在给定的需求条件下,厂商以各种价格能够售出的最大数量,伴随需求曲线而形成的边际曲线表示边际收入,这就是说,由于销售更多一点或更少一点而引起的总收入随每单位产量的变化而变化的那个比例。需求曲线上的价格,表示从相应的销售中获得的平均收入。和平均可变成本曲线一样,平均收入曲线也可以被看作一种相当特殊的边际曲线类型:它表示因销售既定的产量而不是全未销售而发生的每单位产品的总收入的变化。

    现在我们要问,在给定的成本和需求条件下,厂商的最优产量是什么,这个问题接下去又可以细分为两个问题:(1)厂商完全应该生产什么产品吗?(2)假定要生产某种产品,该产品的最优产量是什么?

    第一问题的答案由平均收益(即需求)曲线与平均可变成本曲线的比较给出;这些曲线就是与适用于此种分析目的的边际曲线。如果平均收益曲线处处都低于平均可变成本曲线wωw奇書网,则厂商在生产某种产品时所增加的成本将比增加的收入多,所以最好什么也不生产。如果平均收益曲线在某一点或几点上高于平均可变成本曲线,则在这些点的某一点进行生产,就比完全不生产要好一些。

    假定厂商准备生产某种产品,则该产品的最优数量可通过比较边际收入和边际成本曲线确定。如果对任何产量来说,边际收益大于边际成本,略为增加生产所增加的总收益要比总成本增加得更多,所以多生产一点是合算的。相反,如果边际收益小于边际成本,少生产一点所减少的总收益比减少的总成本更少,所以少生产一点是有利的。因此,最优产量就是边际收益等于边际成本的那一点。

    如果我们略去厂商不生产任何产品的可能性,则可以将方程(1)加以扩展以便包括厂商的产量决策,并且通过去掉对特殊产量的限制,补充边际成本等于边际收益的要求,还可描述厂商的一般均衡。那么方程就变成:

    MPPa/MFCa=MPPb/MFCb=…=1/MC=1/MR

    X=fi(a,b,…)

    这里MC是边际成本,MR为边际收益。

    给定需求曲线和成本条件,最优产量显然就是一个数。为了获得联结需求曲线与最优产量的函数,有必要通过若干参数来描述需求曲线,然后把最优产量看作是这些参数的函数。例如,如果人们只限于考虑直线需求曲线,则对于给定的成本条件,最优产量可以表述为需求曲线的高度和斜率的函数。

    能用一个单独的参数描述需求曲线的十分重要的特例是竞争时的情况,在这种情形中,厂商产品的需求曲线被看作是一条水平线。这条需求曲线因此完全可以通过它的高度即产品的市场价格来描述。把最优产量与需求曲线相联结的函数就可以描述为把最优产量与价格相联系的函数。

    在这个特殊例子里,平均收益曲线和边际收益曲线是一致的,都等于价格。只有当价格高于最小平均可变成本时,厂商才会生产产品;如果价格高于这个水平,厂商将生产一个使价格等于边际成本的产量。对于图5.18(d)中D’情形的成本曲线来说,各种价格下最优产量的轨迹在图5.19中做了概括。价格低于Op时,最优产量为零。所以y轴的实线部分就是最优产量的轨迹;价格高于Op时,边际成本曲线的实线部分就是最优产量的轨迹。在Op点上,存在不连续性;水平的截线联结着两个可供选择的点,但该线上没有一点是最优的。这种不连续性在前面的A、B和C三例中并不存在。在前面的例A(和A’)中,最优产量对任何高于(不变的)边际成本的价格都是无穷大的,这就是为什么这种情况与竞争不相容的原因。

    (2)厂商的供给曲线

    我们要回顾一下,一群特定的供给方对商品的供给曲线,曾经定义为“在给定的供给条件下那些可达到的点与不可达到的点之间的分界线”而如果“供应者愿意按所述的价格供应所说的数量”,

则那些点就被认为是可达到的,在我们能够利用成本曲线画出一条如此定义的供给曲线之前,必须弄清楚另外一点:为了了解供方是否愿意按所说的价格供给所说的数量,奇Qīsuu。сom书我们假设他具有哪些其他的选择?有两种主要的可能性:(1)我们可以设想他只有选择停业——我们可以认为他面临着一个全部或全无的命题。(2)我们可以设想他选择供应所说的数量或任何更少的数量。

    在第一种情形中——即全部或全无的情形——平均可变成本曲线显然是可达到和不可达到的点之间的分界线。厂商将宁愿要平均可变成本曲线以上的点,而不会选择不生产,相比之下,厂商宁愿什么也不生产,也不愿接受平均可变成本曲线以下的一点。

    第二种情形——其中的其他可供选择的情况包括小于所说数量的供应——是两种情形中更有用处的一种,而且是一般画供给曲线时想得到的状况。在这种情形中,可达到的点与不可达到的点之间的分界线稍为有点复杂。对任何产量来说,最小供给价格或者是平均可变成本曲线的纵坐标,或者是边际成本曲线的纵坐标,即是较高的那个;供给曲线因此就是那些最小供给价格的轨迹。这个解释已在图5.20中针对D’的情形给出。实线是供给曲线;阴影区域(加上纵轴)是可达到的点。最小可变成本右边的点以及边际成本与平均可变成本曲线之间的点,根据全部或全无的原则是可达到的,这些点现在已被排除了,因为通过稍为减少产量可以避免的成本,现在在由那个产量获得的收益水平之上,少生产些才是厂商的利益所在。总之,人们可以把边际成本曲线和平均可变成本曲线想象为两者都表示不宜于不同产量变化类型的边际成本——边际成本曲线对应于产量的微小增加或减少,平均可变成本曲线对应于停产。如果两种类型的变化对厂商都是可能的,则具有较大边际成本的那条线显然应是起主导作用的一条,因此,两条曲线中较高的那条是适用的。在前一节的A、B和C三例中,平均可变成本曲线无论哪里都没有处在边际成本曲线以上。所以可以说供给曲线与边际成本曲线是一致的,而且也与各种价格下最优产量的轨迹是一致的;但是很明显,这种一致性一般来说是无效的。

    供给曲线中由边际成本曲线给出的部分,对于大部分目的是适用的,因为厂商宁要这条曲线上的点,而不要可达到的、具有同样价格但产量较低的点。但事情可能并不总是如此。例如,假设不存在外部经济或不经济(这样我们就能够假设厂商的供给曲线独立于产业的产量),并假设存在大量具有图5.20中那样的供给曲线的潜在厂商,再假设政府规定了最低价格,其水平在平均可变成本曲线的最低点之上,并把相同的产量定额分配给任何要求配额厂商,而且总是使总配额数等于按该规定价格需要的数量。在这种情况下,均衡位置将在供给曲线的平均可变成本部分,因为除非该配额已减少到那个数量,否则厂商就会进入该产业。这个理想化的模型也适用于许多私人卡特尔协议。

不同“时期”的供给曲线之间的关系

    到目前为止,我们一直在讨论一个单个的“时期”,也就是生产要素供给曲线的一个单个的集合。然而,很清楚,不同时期的供给曲线必然是相互关联的。省略某些在前一节引入的复杂情形,特别是那些由下降的平均可变成本引起的情形,将简化我们对这种联系的描述。因此,我们将回到早先考虑过的比较简单的例子,在该例中我们省略了不连续性,这样,厂商任何“时期”的供给曲线都可以看作是相应“时期”的边际成本曲线。

    单个厂商

    我们首先来考虑对任何单个厂商都是最长时期的情形。在这种情形中,如果我们仅限于考虑在图5.15(a)和(b)中所描绘的要素供给曲线的某些极端形式,则所有租用要素的供给曲线就都是水平线,或者如果我们考虑一般的情形,则上述供给曲线就是具有正斜率的,但在任何地方都不与数量轴成直角。

    但是,厂商的企业家能力的情况又怎样呢?这个概念需要回顾一下,它是通过“厂商的生产函数”给出定义的,所以如果最
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!