按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
只要我们只限于类和宾辞,就不可能解释次序,或把一个有序的偶和无序的一个两项的类加以区分。
所有这些都是我们在《数学原理》里所发展出来的关系算法的哲学背景。我们不得不把各种概念用符号来表示,这些概念在以前是数理逻辑学家们没有弄得显著的。这些概念中最重要的是:(1)由一些项而成的类,这些项对于一个既定的y项有R关系;(2)由一些项而成的类,对于这些项一个既定的x项有R关系;(3)关系的“范围”
,这个范围是由一个类而成,这个类中所有的项对于某种什么东西有R关系;(4)
R的“相反范围”
,这个范围是由一个类而成,某种什么东西对于这个类中所有的项有R关系;(5)R的“领域”
,这个领域是由上面所说的那种“范围”和“相反范围”
而成;(6)一种R关系的“反面”
,这是x和y之间有R关系的时候,y和x之间所具的一种关系;(7)
R和S两种关系的“关系产物”
,这是有一个y中项的时候,x和z之间的一种关系,x对于y有R关系,y对于z有S关系;(8)复数,其界说如下:有既定的某a类,我们形成一个由若干项而成的类,所有这些项对于a的某项有R关系。我们可以看一看人与人
…… 88
《数学原理》:数学方面78
的关系来作以上各种概念的例子。举例来说,假定R是父母与子女的关系。那么,(1)就是y的父母;(2)是x的子女;(3)是所有那些有子女的人的类;(4)是所有那些有父母的人的类,那就是说,除了亚当和夏娃以外,每人都包括在内;(5)
“父母”关系的领域包括每个人,他或是某人的父母,或是某人的子女;(6)
“的父母”这种关系的反面是“的子女”
那么一种关系;(7)“祖父母”是父母与父母的关系产物,“弟兄或姊妹”是“子女”与“父母”的关系产物,“堂兄弟或弟兄或姊妹”是孙和祖父母的关系产物,其余可以类推;(8)
“伊通学院学生的父母”是按这一个意义来说的复数。
不同种类的关系有不同种类的用处。我们可以先讲一种关系,这种关系产生一种东西,我名之曰“叙述函项”。这是最多只有一项对于既定的一项所能有的一种关系。这种关系产生用单数的“the”这个字的短语,如“the
father
of
x“
(x的父亲)
,“the
dou-ble
of
x“
(x的两倍)
,“the
sine
of
x“
(x的正弦)
,以及数学中所有的普通函数。
这种函项只能由我名之曰“一对多”的那种关系产生出来,也就是最多一项对于任何别的一项所能有的那种关系。举例来说,如果你正在谈一个信基督教的国家,你可以说“x的妻”
,但是如果用于一个一夫多妻制的国家,这一个短语的意思就不明确了。
在数学里你可以说“x的平方”
,但是不能说“x的平方根”
,因为x有两个平方根。前面所列的表里的“范围”
、“相反范围”和“领域”都产生叙述函项。
第二种极其重要的关系是在两个类之间建立一种相互关系的那种关系。这种关系我名之曰“一对一”的关系。这是
…… 89
88第 八 章
这样一种关系,在这种关系中,不仅最多只有一个对于一个既定的y有R关系的x,而且最多也只有一个y,对于这个y一个既定的x有R关系。
举一个例子:禁止一夫多妻的婚姻。
凡是在两个类之间有这样一种相互关系存在,这两个类的项的数目就是一样的。举例来说:不用计算我们就知道妻的数目和夫的数目是一样的,人的鼻子的数目和人的数目是一样的。
有一种特殊形式的相互关系,这种关系也是极其重要的。
这种相互关系的起因是:有两个类是P和Q两个关系的领域,并且在它们之间有一种相互关系,凡是两个项有P这种关系的时候,它们的相关者就有Q这种关系,反之亦然。结过婚的官吏的位次和他们的妻的位次就是一个例子。如果这些妻不和贵族有关系,或者如果这些官吏不是主教,这些妻的位次就和丈夫的位次是一样的。这种产生相互关系的东西名曰“次序的相互关系产生者”
,因为不管在P领域中的各项有怎么一种次序,这种次序总保存在Q领域中的它们的相关者中。
第三种重要的关系类型是产生系列的一种关系。
“系列”
是一个旧的,人人都熟悉的名辞,但我认为我是给这个辞以一个确切意义的第一个人。一个系列就是一个组,包含若干项,这些项有一个次序,这个次序来源于一种关系,这种关系具有三种性质:(a)这种关系一定是不对称的,那就是说,如果x对y有这种关系,y对x就没有这种关系;(b)
它一定是及物的,那就是说,如果x对y有这种关系,并且y对z有这种关系,x对z就有这种关系;(c)它一定是连接的,那就是说,如果x和y是这种关系领域中的任何不同的两项,那
…… 90
《数学原理》:数学方面98
么,不是x对于y有这种关系,就是y对于x有这种关系。
如果一种关系具备了这三种性质,它就把它领域中的各项排列在一个系列中。
所有这些性质都很容易用人与人关系的例子来说明。丈。
夫这种关系是不对称的,因为如果。A是B的丈夫,B就不是A的丈夫。相反,配偶就是对称的。祖先是及物的,因为。。。。A的一个祖先的一个祖先是A的一个祖先;但是父亲是不及物。。
的。
在一个系列关系所必具的三个性质之中,祖先具备两个,。。
不具备第三个,“连接”
,那个性质,因为,并不是任何两个人之中,一个一定是另一个的祖先。另外一方面,举例来说,如果我们看一看一个皇室的王位继承,儿子总是继承父亲,仅限于这个王系的祖先关系是连接的,所以这些国王形成一个系列。
上面这三种关系是逻辑和普通数学之间过渡的极为重要的关系。
现在我想进而把几种发展的大意说一说,以上所讲的逻辑上的那一套对于这些发展是很有用的。但是在讲之前,我先说几句概括的话。
在我年轻的时候,人家告诉我说,数学是关于数目和量的科学,另一种说法是,数学是关于数目和度量的科学。这一个定义失之过于狭隘。第一:在传统的数学里所讲的那些很多不同种类的数目只占数学方法所应用到的那个范围的一小部分,并且,为建立算术的基础我们所不能不有的推理是和数目没有很密切的关系的。第二:在讲算术和算术的绪论的时候,我们不可忘记,有些定理对于有限的和无限的类或
…… 91
09第 八 章
数来说都一样是真的。只要可能,我们不应该只为前者对于这些定理加以证明。说得更普通一些,如果在比较普遍的范围内我们可以证明一些定理,我们认为,在特殊某类的实例中对于这些定理加以证明是一件耗费时间的事。第三:算术中的一些传统的形式定律,即,结合定律,(a+b)+c=a+(b+c)
交互定律,a+b=b+a以及乘法上的一些类似的定律和分配定律a×(b+c)=(a×b)+(a×c)
我们认为证实这些定律是我们的目的的一部分。初学数学的人只学了这些定律而无证明,要不然,如果有证明,他们是用数学归纳法,因此只对于有限数是有效的。加法和乘法上的普遍定义假定因数的数目是有限的。我们竭力想去掉包括以上所说那一种在内的一些限制。
用所谓“选择”的方法,我们可以把乘法扩展到无限多的因数。用选举议会的议员这个例子最容易使我们明白选择这个概念是什么。假定在该国家里每一个选举出来的议员必须是选民中的一员,整个议会就是自选民而来的一个所谓“选择”。大意是这样:如果有一个由若干类而成的类,